Nitrogen use and carbon sequestered by corn rotations in the northern corn belt, U.S.

نویسندگان

  • J L Pikul
  • T E Schumacher
  • M Vigil
چکیده

Diversified crop rotation may improve production efficiency, reduce fertilizer nitrogen (N) requirements for corn (Zea mays L.), and increase soil carbon (C) storage. Objectives were to determine effect of rotation and fertilizer N on soil C sequestration and N use. An experiment was started in 1990 on a Barnes clay loam (U.S. soil taxonomy: fine-loamy, mixed, superactive, frigid Calcic Hapludoll) near Brookings, SD. Tillage systems for corn-soybean ( Glycine max [L.] Merr.) rotations were conventional tillage (CS) and ridge tillage (CSr). Rotations under conventional tillage were continuous corn (CC), and a 4-year rotation of corn-soybean-wheat ( Triticum aestivum L.) companion-seeded with alfalfa ( Medicago sativa L.)-alfalfa hay (CSWA). Additional treatments included plots of perennial warm season, cool season, and mixtures of warm and cool season grasses. N treatments for corn were corn fertilized for a grain yield of 8.5 Mg ha(-1) (highN), of 5.3 Mg ha(-1) (midN), and with no N fertilizer (noN). Total (1990-2000) corn grain yield was not different among rotations at 80.8 Mg ha(-1) under highN. Corn yield differences among rotations increased with decreased fertilizer N. Total (1990-2000) corn yields with noN fertilizer were 69 Mg ha-1 under CSWA, 53 Mg ha(-1) under CS, and 35 Mg ha(-1) under CC. Total N attributed to rotations (noN treatments) was 0.68 Mg ha(-1) under CSWA, 0.61 Mg ha(-1) under CS, and 0.28 Mg ha(-1) under CC. Plant carbon return depended on rotation and N. In the past 10 years, total C returned from above- ground biomass was 29.8 Mg ha(-1) under CC with highN, and 12.8 Mg ha(-1) under CSWA with noN. Soil C in the top 15 cm significantly increased (0.7 g kg(-1)) with perennial grass cover, remained unchanged under CSr, and decreased (1.7 g kg(-1)) under CC, CS, and CSWA. C to N ratio significantly narrowed (-0.75) with CSWA and widened (0.72) under grass. Diversified rotations have potential to increase N use efficiency and reduce fertilizer N input for corn. However, within a corn production system using conventional tillage and producing (averaged across rotation and N treatment) about 6.2-Mg ha(-1) corn grain per year, we found no gain in soil C after 10 years regardless of rotation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cover cropping to reduce nitrate loss through subsurface drainage in the northern U.S. corn belt.

Despite the use of best management practices for nitrogen (N) application rate and timing, significant losses of nitrate nitrogen (NO3(-)-N) in drainage discharge continue to occur from row crop cropping systems. Our objective was to determine whether a autumn-seeded winter rye (Secale cereale L.) cover crop following corn (Zea mays L.) would reduce NO3(-)-N losses through subsurface tile drain...

متن کامل

Multifunctional agriculture: Root and nitrogen dynamics in two alternative systems

The Corn Belt of the Midwestern United States is among the most productive grainproducing regions of the world. Yet the development of the Corn Belt has been accompanied by a suite of environmental concerns. Alternative systems have been proposed that remediate environmental quality while relying on fewer external inputs (e.g., synthetic nitrogen fertilizer) than dominate cropping systems of co...

متن کامل

Closing the Corn Yield Gap: Management Practices that Improve Soil Quality and Net Productivity but Reduce Global Warming Potential

Meeting the projected global demand for food and fuel from corn systems while conserving natural resources and improving environmental quality can only be achieved by the intensification of existing corn systems. Yield analysis of the central U.S. Corn Belt indicates that there is a large exploitable yield gap for corn. Since 1999, we have been experimenting with optimizing corn management syst...

متن کامل

Phosphorus and Potassium Placement Methods for Corn and Soybean: an Iowa Perspective

Increasing fertilizer prices and awareness of potential impacts of excessive or badly applied nutrients on water quality has renewed interest in fertilizer management strategies that reduce nutrient inputs or improve efficacy. Fertilizer recommendations for phosphorus (P) and potassium (K) in Iowa and most states of the Corn Belt are based on soil testing and maintenance of desirable soil-test ...

متن کامل

Development of Early Maturing GEM lines with Value Added Traits: Moving U.S. Corn Belt GEM Germplasm Northward

Introduction: The corn-breeding program at NDSU has been developing early maturing (6595RM) corn since 1933. We have created ‘EarlyGEM’, a continuous effort to incorporate GEM germplasm into the northern U.S. Corn Belt. Our program is one of the few public programs that can still offer a strong emphasis on germplasm improvement, inbred line development, and training of applied plant breeders. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • TheScientificWorldJournal

دوره 1 Suppl 2  شماره 

صفحات  -

تاریخ انتشار 2001