Synthetic models for the cysteinate-ligated non-heme iron enzyme superoxide reductase: observation and structural characterization by XAS of an Fe(III)-OOH intermediate.
نویسندگان
چکیده
Superoxide reductases (SORs) belong to a new class of metalloenzymes that degrade superoxide by reducing it to hydrogen peroxide. These enzymes contain a catalytic iron site that cycles between the Fe(II) and Fe(III) states during catalysis. A key step in the reduction of superoxide has been suggested to involve HO(2) binding to Fe(II), followed by innersphere electron transfer to afford an Fe(III)-OO(H) intermediate. In this paper, the mechanism of the superoxide-induced oxidation of a synthetic ferrous SOR model ([Fe(II)(S(Me2)N(4)(tren))](+) (1)) to afford [Fe(III)(S(Me2)N(4)(tren)(solv))](2+) (2-solv) is reported. The XANES spectrum shows that 1 remains five-coordinate in methanolic solution. Upon reaction of 1 with KO(2) in MeOH at -90 degrees C, an intermediate (3) is formed, which is characterized by a LMCT band centered at 452(2780) nm, and a low-spin state (S = 1/2), based on its axial EPR spectrum (g(perpendicular) = 2.14; g(parallel) = 1.97). Hydrogen peroxide is detected in this reaction, using both (1)H NMR spectroscopy and a catalase assay. Intermediate 3 is photolabile, so, in lieu of a Raman spectrum, IR was used to obtain vibrational data for 3. At low temperatures, a nu(O-O) Fermi doublet is observed in the IR at 788(2) and 781(2) cm(-)(1), which collapses into a single peak at 784 cm(-1) upon the addition of D(2)O. This vibrational peak diminishes in intensity over time and essentially disappears after 140 s. When 3 is generated using an (18)O-labeled isotopic mixture of K(18)O(2)/K(16)O(2) (23.28%), the vibration centered at 784 cm(-1) shifts to 753 cm(-1). This new vibrational peak is close to that predicted (740 cm(-1)) for a diatomic (18)O-(18)O stretch. In addition, a nu(O-O) vibrational peak assigned to free hydrogen peroxide is also observed (nu(O-O) = 854 cm(-1)) throughout the course of the reaction between Fe(II)-1 and superoxide and is strongest after 100 s. XAS studies indicate that 3 possesses one sulfur scatterer at 2.33(2) A and four nitrogen scatterers at 2.01(1) A. Addition of two Fe-O shells, each containing one oxygen, one at 1.86(3) A and one at 2.78(3) A, improved the EXAFS fits, suggesting that 3 is an end-on peroxo or hydroperoxo complex, [Fe(III)(S(Me2)N(4)(tren))(OO(H))](+). Upon warming above -50 degrees C, 3 is converted to 2-MeOH. In methanol and methanol:THF (THF = tetrahydrofuran) solvent mixtures, 2-MeOH is characterized by a LMCT band at lambda(max) = 511(1765) nm, an intermediate spin-state (S = 3/2), and, on the basis of EXAFS, a relatively short Fe-O bond (assigned to a coordinated methanol or methoxide) at 1.94(10) A. Kinetic measurements in 9:1 THF:MeOH at 25 degrees C indicate that 3 is formed near the diffusion limit upon addition of HO(2) to 1 and converts to 2-MeOH at a rate of 65(1) s(-1), which is consistent with kinetic studies involving superoxide oxidation of the SOR iron site.
منابع مشابه
A functional model for the cysteinate-ligated non-heme iron enzyme superoxide reductase (SOR).
Superoxide reductases (SORs) are cysteine-ligated, non-heme iron enzymes that reduce toxic superoxide radicals (O2-). The functional role of the trans cysteinate, as well as the mechanism by which SOR reduces O2-, is unknown. Herein is described a rare example of a functional metalloenzyme analogue, which catalytically reduces superoxide in a proton-dependent mechanism, via a trans thiolate-lig...
متن کاملHow does cyanide inhibit superoxide reductase? Insight from synthetic FeIIIN4S model complexes.
Superoxide reductases (SORs) are nonheme iron-containing enzymes that reduce HO(2) to H(2)O(2). Exogenous substrates such as N(3)(-) and CN(-) have been shown to bind to the catalytic iron site of SOR, and cyanide acts as an inhibitor. To understand how these exogenous ligands alter the physical and reactivity properties of the SOR iron site, acetate-, azide-, and cyanide-ligated synthetic mode...
متن کاملHow does cyanide inhibit superoxide reductase? Insight from synthetic FeN4S model complexes
and CN2 have been shown to bind to the catalytic iron site of SOR, and cyanide acts as an inhibitor. To understand how these exogenous ligands alter the physical and reactivity properties of the SOR iron site, acetate-, azide-, and cyanide-ligated synthetic models of SOR have been prepared. The x-ray crystal structures of azideligated [Fe(SN4(tren))(N3)] (3), dimeric cyanide-bridged ([Fe(SN4(tr...
متن کاملSynthetic Models for the Cysteinate-Ligated Non-Heme Iron Enzyme Superoxide Reductase: Observation and Structural Characterization by XAS of an Fe-OOH Intermediate
Superoxide reductases (SORs) belong to a new class of metalloenzymes that degrade superoxide by reducing it to hydrogen peroxide. These enzymes contain a catalytic iron site that cycles between the FeII and FeIII states during catalysis. A key step in the reduction of superoxide has been suggested to involve HO2 binding to FeII, followed by innersphere electron transfer to afford an FeIII-OO(H)...
متن کاملThioether-ligated iron(II) and iron(III)-hydroperoxo/alkylperoxo complexes with an H-bond donor in the second coordination sphere.
The non-heme iron complexes, [Fe(II)(N3PySR)(CH3CN)](BF4)2 () and [Fe(II)(N3Py(amide)SR)](BF4)2 (), afford rare examples of metastable Fe(iii)-OOH and Fe(iii)-OOtBu complexes containing equatorial thioether ligands and a single H-bond donor in the second coordination sphere. These peroxo complexes were characterized by a range of spectroscopic methods and density functional theory studies. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 124 39 شماره
صفحات -
تاریخ انتشار 2002