Building a dynamic correlation network for fat-tailed financial asset returns

نویسنده

  • Takashi Isogai
چکیده

In this paper, a novel approach to building a dynamic correlation network of highly volatile financial asset returns is presented. Our method avoids the spurious correlation problem when estimating the dynamic correlation matrix of financial asset returns by using a filtering approach. A multivariate volatility model, DCC–GARCH, is employed to filter the fat-tailed returns. The method is proven to be more reliable for detecting dynamic changes in the correlation matrix compared with the widely used method of calculating time-dependent correlation matrices over a fixed size moving window, which can have fundamental problems when applied to fat-tailed returns. We apply the method to selected Japanese stock returns to observe the dynamic network changes as a case study. The estimated time-dependent correlation matrices are then compared with those calculated by using the traditional method to highlight the advantages of the proposed method. Two types of indicators, namely the largest eigenvalue and cosine distance measures, are introduced to identify significant changes in the correlation matrix for an initial screening of remarkable stress events. A more detailed network-based analysis is then conducted by examining topological measures calculated from the network adjacency matrices. The higher density and lower heterogeneity of the correlation network during stress periods are clearly observed, while the correlation network of stock returns is shown to be robust with regard to time. The method discussed in this paper is not limited to stock returns; it can also be applied to build a dynamic correlation network of other financial and non-financial time series with high volatility.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic correlation network analysis of financial asset returns with network clustering

In this study, we propose a novel approach to analyze a dynamic correlation network of highly volatile financial asset returns by using a network clustering algorithm to deal with high dimensionality issues. We analyze the dynamic correlation network of selected Japanese stock returns as an empirical study of the correlation dynamics at the market level by applying the proposed method. Two type...

متن کامل

Beauty Contests and Fat Tails in Financial Markets

Using a simultaneous-move herding model of rational traders who infer other traders’ private information on the value of an asset by observing their aggregate actions, this study seeks to explain the emergence of fat-tailed distributions of transaction volumes and asset returns in financial markets. Without making any parametric assumptions on private information, we analytically show that trad...

متن کامل

Dynamic Asset Allocation and Downside-Risk Aversion

This paper considers dynamic asset allocation in a mean versus downside-risk framework. We derive closed-form solutions for the optimal portfolio weights when returns are lognormally distributed. Moreover, we study the impact of skewed and fat-tailed return distributions. We nd that the optimal fraction invested in stocks is V-shaped: at low and high levels of wealth the investor increases the ...

متن کامل

A Generalized Dynamic Conditional Correlation Model for Many Asset Returns

In this paper we put forward a generalization of the Dynamic Conditional Correlation (DCC) Model of Engle (2002). Our model allows for asset-specific correlation sensitivities, which is useful in particular if one aims to summarize a large number of asset returns. The resultant GDCC model is considered for daily data on 18 German stock returns, which are all included in the DAX, and for 25 UK s...

متن کامل

Extreme Global Equity Market Risk JOHN COTTER

Extreme asset price movements appear to be more pronounced over time and have major consequences for an economy’s financial stability and monetary policies. This paper investigates the extreme behaviour of equity market returns and quantifies the probabilities of these losses. Taking fourteen major equity markets the study illustrates similarities and divergences in the tail returns from around...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied Network Science

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2016