Microbial diversity in alpine tundra wet meadow soil: novel Chloroflexi from a cold, water-saturated environment.
نویسندگان
چکیده
Cold, water-saturated soils play important biogeochemical roles, yet almost nothing is known about the identity and habitat of microbes active under such conditions. We investigated the year-round microenvironment of an alpine tundra wet meadow soil in the Colorado Rocky Mountains, focusing on the biogeochemistry and microbial diversity of spring snowmelt--a dynamic time for alpine ecosystems. In situ measurements revealed spring and autumn periods of long-term temperature stability near 0 degrees C, and that deeper soil (30 cm) was more stable than surface soil, with more moderate summers and winters, and longer isothermal phases. The soil was saturated and water availability was limited by freezing rather than drying. Analyses of bioavailable redox species showed a shift from Mn reduction to net Fe reduction at 2-3 cm depth, elevated SO4(2-) and decreased soluble Zn at spring snowmelt. Terminal restriction fragment length polymorphism profiles detected a correlated shift in bacterial community composition at the surface to subsurface transition. Bacterial and archaeal small-subunit rRNA genes were amplified from saturated spring soil DNA pooled along a depth profile. The most remarkable feature of these subsurface-biased libraries was the high relative abundance of novel, uncultivated Chloroflexi-related sequences comprising the third largest bacterial division sampled, and representing seven new Chloroflexi subdivisions, thereby dramatically expanding the known diversity of this bacterial division. We suggest that these novel Chloroflexi are active at near -0 degrees C temperatures, under likely anoxic conditions, and utilize geochemical inputs such as sulfide from upslope weathering.
منابع مشابه
Impacts of twenty years of experimental warming on soil carbon, nitrogen, moisture and soil mites across alpine/subarctic tundra communities
High-altitude and alpine areas are predicted to experience rapid and substantial increases in future temperature, which may have serious impacts on soil carbon, nutrient and soil fauna. Here we report the impact of 20 years of experimental warming on soil properties and soil mites in three contrasting plant communities in alpine/subarctic Sweden. Long-term warming decreased juvenile oribatid mi...
متن کاملTopographic Patterns of Above- and Belowground Production and Nitrogen Cycling in Alpine Tundra
Topography controls snowpack accumulation and hence growing-season length, soil water availability, and the distribution of plant communities in the Colorado Front Range alpine. Nutrient cycles in such an environment are likely to be regulated by interactions between topographically determined climate and plant species composition. We investigated variation in plant and soil components of inter...
متن کاملSoil microbial and nutrient dynamics in a wet Arctic sedge meadow in late winter and early spring
Microbial activity is known to continue during the winter months in cold alpine and Arctic soils often resulting in high microbial biomass. Complex soil nutrient dynamics characterize the transition when soil temperatures approach and exceed 0 1C in spring. At the time of this transition in alphine soils microbial biomass declines dramatically together with soil pools of available nutrients. Th...
متن کاملFire Alters Vegetation and Soil Microbial Community in Alpine Meadow
Grassland fire, as an important ecological factor, is quite influential in determining the structural and functional stability of ecosystem. In this work, the fire-induced changes on the vegetation and soil microbial community were studied in alpine meadow. Microbial community composition was assessed by phospholipid fatty acid (PLFA) analysis, and functional diversity was determined by Biolog ...
متن کاملFreezing–thawing cycles effect on the water soluble organic carbon, nitrogen and microbial biomass of alpine grassland soil in Northern Tibet
Soil freezing-thawing cycle may substantially influence soil physical properties, microbial activity, and the rates of carbon and nitrogen cycling in soils. In this study, the soil water soluble organic C, N (WSOC, WSON) as well as microbial biomass C, N (MBC, MBN) of two alpine grassland types, alpine meadow and alpine steppe, were investigated after freezing-thawing cycles in a grassland land...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental microbiology
دوره 8 8 شماره
صفحات -
تاریخ انتشار 2006