ar X iv : a lg - g eo m / 9 70 60 04 v 1 1 0 Ju n 19 97 NUMERICAL SCHUBERT CALCULUS

نویسنده

  • BERND STURMFELS
چکیده

We develop numerical homotopy algorithms for solving systems of polynomial equations arising from the classical Schubert calculus. These homotopies are optimal in that generically no paths diverge. For problems defined by hypersurface Schubert conditions we give two algorithms based on extrinsic deformations of the Grassmannian: one is derived from a Gröbner basis for the Plücker ideal of the Grassmannian and the other from a SAGBI basis for its projective coordinate ring. The more general case of special Schubert conditions is solved by delicate intrinsic deformations, called Pieri homotopies, which first arose in the study of enumerative geometry over the real numbers. Computational results are presented and applications to control theory are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997