Chemical Inhibitors of Non-Homologous End Joining Increase Targeted Construct Integration in Cryptococcus neoformans
نویسندگان
چکیده
The development of a biolistic transformation protocol for Cryptococcus neoformans over 25 years ago ushered in a new era of molecular characterization of virulence in this previously intractable fungal pathogen. However, due to the low rate of homologous recombination in this species, the process of creating targeted gene deletions using biolistic transformation remains inefficient. To overcome the corresponding difficulty achieving molecular genetic modifications, members of the Cryptococcus community have investigated the use of specific genetic backgrounds or construct design strategies aimed at reducing ectopic construct integration via non-homologous end joining (NHEJ). One such approach involves deletion of components of the NHEJ-associated Ku heterodimer. While this strategy increases homologous recombination to nearly 100%, it also restricts strain generation to a ku80Δ genetic background and requires subsequent complex mating procedures to reestablish wild-type DNA repair. In this study, we have investigated the ability of known inhibitors of mammalian NHEJ to transiently phenocopy the C. neoformans Ku deletion strains. Testing of eight candidate inhibitors revealed a range of efficacies in C. neoformans, with the most promising compound (W7) routinely increasing the rate of gene deletion to over 50%. We have successfully employed multiple inhibitors to reproducibly enhance the deletion rate at multiple loci, demonstrating a new, easily applied methodology to expedite acquisition of precise genetic alterations in C. neoformans. Based on this success, we anticipate that the use of these inhibitors will not only become widespread in the Cryptococcus community, but may also find use in other fungal species as well.
منابع مشابه
Targeted Genome Editing via CRISPR in the Pathogen Cryptococcus neoformans
Low rates of homologous integration have hindered molecular genetic studies in Cryptococcus neoformans over the past 20 years, and new tools that facilitate genome manipulation in this important pathogen are greatly needed. To this end, we have investigated the use of a Class 2 CRISPR system in C. neoformans (formerly C. neoformans var. grubii). We first expressed a derivative of the Streptococ...
متن کاملLocation, location, location: Use of CRISPR-Cas9 for genome editing in human pathogenic fungi
Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-Cas9 systems enable the targeting of a double-strand break in genomic DNA to a location chosen by the investigator [1]. The break may be repaired (Fig 1) by cellular nonhomologous end joining (NHEJ) machinery to yield small insertions and deletions [2], which are often loss-of-function mutations in coding regions. If a repair tem...
متن کاملImpact of non-homologous end-joining deficiency on random and targeted DNA integration: implications for gene targeting
In higher animal cells, the principal limitation of gene-targeting technology is the extremely low efficiency of targeted integration, which occurs three to four orders of magnitude less frequently than random integration. Assuming that random integration mechanistically involves non-homologous end-joining (NHEJ), inactivation of this pathway should reduce random integration and may enhance gen...
متن کاملThe mechanism of gene targeting in Physcomitrella patens: homologous recombination, concatenation and multiple integration
The model bryophyte Physcomitrella patens exhibits high frequencies of gene targeting when transformed with DNA constructs containing sequences homologous with genomic loci. 'Targeted gene replacement' (TGR) resulting from homologous recombination (HR) between each end of a targeting construct and the targeted locus occurs when either single or multiple targeting vectors are delivered. In the l...
متن کاملBiolistic transformation of a fluorescent tagged gene into the opportunistic fungal pathogen Cryptococcus neoformans.
The basidiomycete Cryptococcus neoformans, an invasive opportunistic pathogen of the central nervous system, is the most frequent cause of fungal meningitis worldwide resulting in more than 625,000 deaths per year worldwide. Although electroporation has been developed for the transformation of plasmids in Cryptococcus, only biolistic delivery provides an effective means to transform linear DNA ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016