Estimating Litter Decomposition Rate in Single-Pool Models Using Nonlinear Beta Regression

نویسندگان

  • Etienne Laliberté
  • E. Carol Adair
  • Sarah E. Hobbie
چکیده

Litter decomposition rate (k) is typically estimated from proportional litter mass loss data using models that assume constant, normally distributed errors. However, such data often show non-normal errors with reduced variance near bounds (0 or 1), potentially leading to biased k estimates. We compared the performance of nonlinear regression using the beta distribution, which is well-suited to bounded data and this type of heteroscedasticity, to standard nonlinear regression (normal errors) on simulated and real litter decomposition data. Although the beta model often provided better fits to the simulated data (based on the corrected Akaike Information Criterion, AIC(c)), standard nonlinear regression was robust to violation of homoscedasticity and gave equally or more accurate k estimates as nonlinear beta regression. Our simulation results also suggest that k estimates will be most accurate when study length captures mid to late stage decomposition (50-80% mass loss) and the number of measurements through time is ≥ 5. Regression method and data transformation choices had the smallest impact on k estimates during mid and late stage decomposition. Estimates of k were more variable among methods and generally less accurate during early and end stage decomposition. With real data, neither model was predominately best; in most cases the models were indistinguishable based on AIC(c), and gave similar k estimates. However, when decomposition rates were high, normal and beta model k estimates often diverged substantially. Therefore, we recommend a pragmatic approach where both models are compared and the best is selected for a given data set. Alternatively, both models may be used via model averaging to develop weighted parameter estimates. We provide code to perform nonlinear beta regression with freely available software.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-pool exponential decomposition models: potential pitfalls in their use in ecological studies.

The importance of litter decomposition to carbon and nutrient cycling has motivated substantial research. Commonly, researchers fit a single-pool negative exponential model to data to estimate a decomposition rate (k). We review recent decomposition research, use data simulations, and analyze real data to show that this practice has several potential pitfalls. Specifically, two common decisions...

متن کامل

Oscillatory behavior of two nonlinear microbial models of soil carbon decomposition

A number of nonlinear models have recently been proposed for simulating soil carbon decomposition. Their predictions of soil carbon responses to fresh litter input and warming differ significantly from conventional linear models. Using both stability analysis and numerical simulations, we showed that two of those nonlinear models (a two-pool model and a three-pool model) exhibit damped oscillat...

متن کامل

Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates

As atmospheric CO2 increases, ecosystem carbon sequestration will largely depend on how global changes in climate will alter the balance between net primary production and decomposition. The response of primary production to climatic change has been examined using well-validated mechanistic models, but the same is not true for decomposition, a primary source of atmospheric CO2. We used the Long...

متن کامل

Litter-Carbon Dynamics: The Importance of Decomposition, Accretion, and Sequestration in Understanding Ecosystem Carbon Cycling

The litter carbon (C) pool of a single litter cohort in an agroecosystem is the difference between net primary productivity and decomposition and comprises 1113% of the total C pool (litter and soil 0-15 cm depth) post-harvest. This litter-C pool is highly dynamic and up to 50% can be decomposed in the first 12 months of decomposition. Thus, understanding litter-C dynamics is key in understandi...

متن کامل

Quantifying the Germination of Fagopyrum esculentum Moenc. Using Regression and Thermal-Time Models

Extended Abstract  Introduction: Germination is considered the first and most important stage of establishment and consequently, successful competition which is influenced by genetic and environmental factors. Among the environmental factors influencing the germination, temperature and light are the most important ones. Using different models, the germination response of seeds to temperature c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012