Ergodicity of Hamilton-Jacobi equations with a non coercive non convex Hamiltonian in R/Z
نویسنده
چکیده
The paper investigates the long time average of the solutions of Hamilton-Jacobi equations with a non coercive, non convex Hamiltonian in the torus R2/Z2. We give nonresonnance conditions under which the long-time average converges to a constant. In the resonnant case, we show that the limit still exists, although it is non constant in general. We compute the limit at points where it is not locally constant. Résumé Nous considérons le comportement en temps grand de la moyenne temporelle de solutions d’équations de Hamilton-Jacobi pour un hamiltonien non convexe et non coercif dans le tore R2/Z2. Nous mettons en évidence des conditions de non-résonnance sous lesquelles cette moyenne converge vers une constante. Dans le cas où il y a résonnance, nous montrons que la limite existe, bien qu’étant non constante en général. Nous calculons la limite aux points où celle-ci est non localement constante.
منابع مشابه
Random homogenization of coercive Hamilton-Jacobi equations in 1d
In this paper, we prove the random homogenization of general coercive non-convex HamiltonJacobi equations in the one dimensional case. This extends the result of Armstrong, Tran and Yu when the Hamiltonian has a separable form H(p, x, ω) = H(p) + V (x, ω) for any coercive H(p). Mathematics Subject Classification (2000) 35B27
متن کاملRegularity Theory for Hamilton-Jacobi Equations
using a new set of ideas that combines dynamical systems techniques with control theory and viscosity solutions methods. In (1), H(p, x) : R → R is a smooth Hamiltonian, strictly convex, i.e., D vvL(x, v) > γ > 0 uniformly (this is also called uniformly convex by some authors), and coercive in p (lim|p|→∞ H(p,x) |p| = ∞), and Z n periodic in x (H(p, x + k) = H(p, x) for k ∈ Z). Since R is the u...
متن کاملErgodicity, stabilization, and singular perturbations for Bellman-Isaacs equations
We study singular perturbations of optimal stochastic control problems and differential games arising in the dimension reduction of system with multiple time scales. We analyze the uniform convergence of the value functions via the associated Hamilton-Jacobi-Bellman-Isaacs equations, in the framework of viscosity solutions. The crucial properties of ergodicity and stabilization to a constant th...
متن کاملPeriodic Homogenization of Inviscid G-equation for Incompressible Flows
G-equations are popular front propagation models in combustion literature and describe the front motion law of normal velocity equal to a constant plus the normal projection of fluid velocity. G-equations are Hamilton-Jacobi equations with convex but non-coercive Hamiltonians. We prove homogenization of inviscid G-equation for space periodic incompressible flows. This extends a two space dimens...
متن کاملPeriodic Homogenization of the Inviscid G-equation for Incompressible Flows
G-equations are popular front propagation models in combustion literature and describe the front motion law of normal velocity equal to a constant plus the normal projection of fluid velocity. G-equations are Hamilton-Jacobi equations with convex but non-coercive Hamiltonians. We prove homogenization of the inviscid G-equation for space periodic incompressible flows. This extends a two space di...
متن کامل