Identification of the hammerhead ribozyme metal ion binding site responsible for rescue of the deleterious effect of a cleavage site phosphorothioate.

نویسندگان

  • S Wang
  • K Karbstein
  • A Peracchi
  • L Beigelman
  • D Herschlag
چکیده

The hammerhead ribozyme crystal structure identified a specific metal ion binding site referred to as the P9/G10.1 site. Although this metal ion binding site is approximately 20 A away from the cleavage site, its disruption is highly deleterious for catalysis. Additional published results have suggested that the pro-R(P) oxygen at the cleavage site is coordinated by a metal ion in the reaction's transition state. Herein, we report a study on Cd(2+) rescue of the deleterious phosphorothioate substitution at the cleavage site. Under all conditions, the Cd(2+) concentration dependence can be accounted for by binding of a single rescuing metal ion. The affinity of the rescuing Cd(2+) is sensitive to perturbations at the P9/G10.1 site but not at the cleavage site or other sites in the conserved core. These observations led to a model in which a metal ion bound at the P9/G10.1 site in the ground state acquires an additional interaction with the cleavage site prior to and in the transition state. A titration experiment ruled out the possibility that a second tight-binding metal ion (< 10 microM) is involved in the rescue, further supporting the single metal ion model. Additionally, weakening Cd(2+) binding at the P9/G10.1 site did not result in the biphasic binding curve predicted from other models involving two metal ions. The large stereospecific thio-effects at the P9/G10.1 and the cleavage site suggest that there are interactions with these oxygen atoms in the normal reaction that are compromised by replacement of oxygen with sulfur. The simplest interpretation of the substantial rescue by Cd(2+) is that these atoms interact with a common metal ion in the normal reaction. Furthermore, base deletions and functional group modifications have similar energetic effects on the transition state in the Cd(2+)-rescued phosphorothioate reaction and the wild-type reaction, further supporting the model that a metal ion bridges the P9/G10.1 and the cleavage site in the normal reaction (i.e., with phosphate linkages rather than phosphorothioate linkages). These results suggest that the hammerhead undergoes a substantial conformational rearrangement to attain its catalytic conformation. Such rearrangements appear to be general features of small functional RNAs, presumably reflecting their structural limitations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involvement of a specific metal ion in the transition of the hammerhead ribozyme to its catalytic conformation.

Previous crystallographic and biochemical studies of the hammerhead ribozyme suggest that a metal ion is ligated by the pro-Rp oxygen of phosphate 9 and by N7 of G10.1 and has a functional role in the cleavage reaction. We have tested this model by examining the cleavage properties of a hammerhead containing a unique phosphorothioate at position 9. The Rp-, but not Sp-, phosphorothioate reduces...

متن کامل

Characterization of a native hammerhead ribozyme derived from schistosomes.

A recent re-examination of the role of the helices surrounding the conserved core of the hammerhead ribozyme has identified putative loop-loop interactions between stems I and II in native hammerhead sequences. These extended hammerhead sequences are more active at low concentrations of divalent cations than are minimal hammerheads. The loop-loop interactions are proposed to stabilize a more ac...

متن کامل

Metal-phosphate interactions in the hammerhead ribozyme observed by 31P NMR and phosphorothioate substitutions.

The hammerhead ribozyme is a catalytic RNA that requires divalent metal cations for activity under moderate ionic strength. Two important sites that are proposed to bind metal ions in the hammerhead ribozyme are the A9/G10.1 site, located at the junction between stem II and the conserved core, and the scissile phosphate (P1.1). (31)P NMR spectroscopy in conjunction with phosphorothioate substit...

متن کامل

A re-investigation of the thio effect at the hammerhead cleavage site.

The effect of introducing a phosphorothioate at the hammerhead cleavage site was investigated using a kinetically well-characterized hammerhead. In buffers containing Mg ion, the RP-phosphorothioate isomer cleaved 2000- to 80 000-fold slower than the SPisomer or the unmodified RNA substrate. Addition of low concentrations of several thiophilic metal ions, especially Cd2+, to these reactions is ...

متن کامل

Interactions of the antibiotics neomycin B and chlortetracycline with the hammerhead ribozyme as studied by Zn2+-dependent RNA cleavage.

We have investigated the interactions of two antibiotics, neomycin B and chlortetracycline (CTC), with the hammerhead ribozyme using two Zn(2+) cleavage sites at U4 and A9 in its catalytic core. CTC-dependent inhibition of Zn(2+) cleavage was observed in all cases. In contrast, we unexpectedly observed acceleration of A9 cleavage by neomycin under low ionic strength conditions similar to those ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 38 43  شماره 

صفحات  -

تاریخ انتشار 1999