Using maximality and minimality conditions to construct inequality chains

نویسندگان

  • Ernest J. Cockayne
  • Johannes H. Hattingh
  • Sandra Mitchell Hedetniemi
  • Stephen T. Hedetniemi
  • Alice A. McRae
چکیده

The following inequality chain has been extensively studied in the discrete mathematical literature: i r ~ y ~ i ~ f l ~ F ~IR, where ir and IR denote the lower and upper irredundance numbers of a graph, 2: and F denote the lower and upper domination numbers of a graph, i denotes the independent domination number and fl denotes the vertex independence number of a graph. More than one hundred papers have been published on aspects of this chain. In this paper we define a simple mechanism which explains why this inequality chain exists and how it is possible to define many similar chains of potentially arbitrary length.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Parameterized Complexity of Maximality and Minimality Problems

Many parameterized problems (as the clique problem or the dominating set problem) ask, given an instance and a natural number k as parameter, whether there is a solution of size k. We analyze the relationship between the complexity of such a problem and the corresponding maximality (minimality) problem asking for a solution of size k maximal (minimal) with respect to set inclusion. As our resul...

متن کامل

On the Maximal Extensions of Monotone Operators and Criteria for Maximality

Within a nonzero, real Banach space we study the problem of characterising a maximal extension of a monotone operator in terms of minimality properties of representative functions that are bounded by the Penot and Fitzpatrick functions. We single out a property of this space of representative functions that enable a very compact treatment of maximality and pre-maximality issues. This Paper is D...

متن کامل

Combinatorics on Ideals and Forcing

A natural generalization of Cohen's set of forcing conditions (the t w ~ valued functions with domain a finite subset of w) is the set of twovalued functions with domain an element of an ideal J on ~. The I~roblem treated in this paper is to determine when such forcing yields a generic real of minimal degree of constructibility. A :;imple decomposition argument shows that the non-maximality of ...

متن کامل

Simultaneous Decentralized Competitive Supply Chain Network Design under Oligopoly Competition

This paper discusses a problem in which  decentralized supply chains enter the market simultaneously with no existing rival chains, shape the supply chains’ networks, and set wholesale and retail prices in a noncooperative manner. All the chains produce either identical or highly substitutable products. Customer demand is elastic and price-dependent. A three-step algorithm is proposed to solve ...

متن کامل

On certain maximality principles

‎We present streamlined proofs of certain maximality principles studied by Hamkins‎ ‎and Woodin‎. ‎Moreover‎, ‎we formulate an intermediate maximality principle‎, ‎which is‎ ‎shown here to be equiconsistent with the existence of a weakly compact cardinal $kappa$ such that $V_{kappa}prec V$‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 176  شماره 

صفحات  -

تاریخ انتشار 1997