An improved order of approximation for thin-plate spline interpolation in the unit disc

نویسنده

  • Michael J. Johnson
چکیده

We show that the Lp-norm of the error in thin-plate spline interpolation in the unit disc decays like O(h p), where p := minf2; 1 + 2=pg, under the assumptions that the function to be approximated is C1 and that the interpolation points contain the nite grid fhj : j 2Z; jhjj < 1 hg.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error Estimates for Thin Plate Spline Approximation in the Disc

This paper is concerned with approximation properties of linear combinations of scattered translates of the thin-plate spline radial basis function | · | log | · | where the translates are taken in the unit disc D in R. We show that the Lp approximation order for this kind of approximation is 2+1/p (for sufficiently smooth functions), which matches Johnson’s upper bound and, thus, gives the sat...

متن کامل

Computational Aspects of Approximation to Scattered Data by Using 'Shifted' Thin-Plate Splines

A new multivariate approximation scheme to scattered data on arbitrary bounded domains in Rd is developed. The approximant is selected from a space spanned (essentially) by corresponding translates of the ‘shifted’ thin-plate spline (‘essentially,’ since the space is augmented by certain functions in order to eliminate boundary effects). This scheme applies to noisy data as well as to noiseless...

متن کامل

Order-preserving derivative approximation with periodic radial basis functions

In this exploratory paper we study the convergence rates of an iterated method for approximating derivatives of periodic functions using radial basis function (RBF) interpolation. Given a target function sampled on some node set, an approximation of the m derivative is obtained by m successive applications of the operator “interpolate, then differentiate” this process is known in the spline com...

متن کامل

Div-free minimizing splines under tension

Vector field approximation is a problem involving the reconstruction of physical fields from a set of scattered observed data. In this paper, we address the problem of interpolation of divergence-free vector fields in three dimensional space by thin plate spline under tension. The problem is formulated as a minimization problem where the cost is related to the equilibrium energy of thin plate w...

متن کامل

Div-Curl weighted thin plate splines approximation

The paper deals with Div-Curl approximation problem by weighted thin plate splines. The weighted thin plate splines are an extension of the well known thin plate splines and are radial basis functions which allow the approximation and interpolation of a scalar functions from a given scattered data. We show how the weighted thin plate splines may also be used for the approximation and interpolat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerische Mathematik

دوره 84  شماره 

صفحات  -

تاریخ انتشار 2000