Functional roles of C/EBPα and SUMO-modification in lung development

نویسندگان

  • Yuan-Dong Chen
  • Jiang-Yan Liu
  • Yan-Min Lu
  • Hai-Tao Zhu
  • Wei Tang
  • Qiu-Xia Wang
  • Hong-Yan Lu
چکیده

CCAAT enhancer binding protein alpha (C/EBPα) is a transcription factor regulating the core aspects of cell growth and differentiation. The present study investigated the level and functional role of C/EBPα during the development of the rat lung. C/EBPα protein exhibits a dynamic expression pattern. The correlation between the expression of C/EBPα protein and the content of glycogen during lung maturation was analyzed to understand the function of C/EBPα in lung differentiation. The high expression of C/EBPα coincides with the reduction of glycogen in the fetal lung. In addition, the authors identified that changes in the level of C/EBPα are associated with the secretion of pulmonary surfactant. C/EBPα is modified by small ubiquitin-related modifier (SUMO) post-translationally. The results of double immunofluorescence staining and immunoprecipitation demonstrated that SUMO-modified C/EBPα was present in the lung. The sumoylated C/EBPα gradually decreased during lung differentiation and was negatively correlated with pulmonary surfactant secretion, thereby suggesting that the SUMO modification may participate in C/EBPα-mediated lung growth and differentiation. These results indicated that C/EBPα played a role in lung development and provided the insight into the mechanism underlying SUMO-modification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sumoylation of CCAAT/enhancer-binding protein α is implicated in hematopoietic stem/progenitor cell development through regulating runx1 in zebrafish

The small ubiquitin-related modifier (SUMO) participates in various cellular processes, including maintenance of genome integrity, nuclear transport, transcription and signal transduction. However, the biological function of sumoylation in hematopoiesis has not been fully explored. We show here that definitive hematopoietic stem/progenitor cells (HSPCs) are depleted in SUMO-deficient zebrafish ...

متن کامل

SUMO and ubiquitin in the nucleus: different functions, similar mechanisms?

The small ubiquitin-related modifier SUMO posttranslationally modifies many proteins with roles in diverse processes including regulation of transcription, chromatin structure, and DNA repair. Similar to nonproteolytic roles of ubiquitin, SUMO modification regulates protein localization and activity. Some proteins can be modified by SUMO and ubiquitin, but with distinct functional consequences....

متن کامل

Differential effects of sumoylation on the activities of CCAAT enhancer binding protein alpha (C/EBPα) p42 versus p30 may contribute in part, to aberrant C/EBPα activity in acute leukemias

In this study, we have examined the role of post-translational modification of the myeloid master regulator C/EBPα by small ubiquitin-related modifier (SUMO). We have used transient transfection analysis, oligonucleotide pulldown assays and chromatin immuno-precititation in all-trans retinoic acid (ATRA)-inducible promyelocytic cell lines MPRO and NB4. We demonstrate that sumoylated wild-type p...

متن کامل

Long Noncoding RNA ADINR Regulates Adipogenesis by Transcriptionally Activating C/EBPα

C/EBPα is a critical transcriptional regulator of adipogenesis. How C/EBPα transcription is itself regulated is poorly understood, however, and remains a key question that needs to be addressed for a complete understanding of adipogenic development. Here, we identify a lncRNA, ADINR (adipogenic differentiation induced noncoding RNA), transcribed from a position ∼450 bp upstream of the C/EBPα ge...

متن کامل

Silencing hyperoxia-induced C/EBPα in neonatal mice improves lung architecture via enhanced proliferation of alveolar epithelial cells.

Postnatal lung development requires proliferation and differentiation of specific cell types at precise times to promote proper alveolar formation. Hyperoxic exposure can disrupt alveolarization by inhibiting cell growth; however, it is not fully understood how this is mediated. The transcription factor CCAAT/enhancer binding protein-α (C/EBPα) is highly expressed in the lung and plays a role i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2017