Improving Zero-Shot-Learning for German Particle Verbs by using Training-Space Restrictions and Local Scaling

نویسندگان

  • Maximilian Köper
  • Sabine Schulte im Walde
  • Max Kisselew
  • Sebastian Padó
چکیده

Recent models in distributional semantics consider derivational patterns (e.g., use → use + f ul ) as the result of a compositional process, where base term and affix are combined. We exploit such models for German particle verbs (PVs), and focus on the task of learning a mapping function between base verbs and particle verbs. Our models apply particle-verb motivated training-space restrictions relying on nearest neighbors, as well as recent advances from zeroshot-learning. The models improve the mapping between base terms and derived terms for a new PV derivation dataset, and also across existing derivation datasets for German and English.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scaling Human-Object Interaction Recognition through Zero-Shot Learning

Recognizing human object interactions (HOI) is an important part of distinguishing the rich variety of human action in the visual world. While recent progress has been made in improving HOI recognition in the fully supervised setting, the space of possible human-object interactions is large and it is impractical to obtain labeled training data for all interactions of interest. In this work, we ...

متن کامل

Enhanced Comprehensive Learning Cooperative Particle Swarm Optimization with Fuzzy Inertia Weight (ECLCFPSO-IW)

So far various methods for optimization presented and one of most popular of them are optimization algorithms based on swarm intelligence and also one of most successful of them is Particle Swarm Optimization (PSO). Prior some efforts by applying fuzzy logic for improving defects of PSO such as trapping in local optimums and early convergence has been done. Moreover to overcome the problem of i...

متن کامل

Preserving Semantic Relations for Zero-Shot Learning

Zero-shot learning has gained popularity due to its potential to scale recognition models without requiring additional training data. This is usually achieved by associating categories with their semantic information like attributes. However, we believe that the potential offered by this paradigm is not yet fully exploited. In this work, we propose to utilize the structure of the space spanned ...

متن کامل

Class label autoencoder for zero-shot learning

Existing zero-shot learning (ZSL) methods usually learn a projection function between a feature space and a semantic embedding space(text or attribute space) in the training seen classes or testing unseen classes. However, the projection function cannot be used between the feature space and multi-semantic embedding spaces, which have the diversity characteristic for describing the different sem...

متن کامل

German Particle Verbs And Pleonastic Prepositions

This paper discusses the behaviour of German particle verbs formed by two-way prepositions in combination with pleonastic PPs including the verb particle as a preposition. These particle verbs have a characteristic feature: some of them license directional prepositional phrases in the accusative, some only allow for locative PPs in the dative, and some particle verbs can occur with PPs in the a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016