Root carbon and protein metabolism associated with heat tolerance.
نویسندگان
چکیده
Extensive past efforts have been taken toward understanding heat tolerance mechanisms of the aboveground organs. Root systems play critical roles in whole-plant adaptation to heat stress, but are less studied. This review discusses recent research results revealing some critical physiological and metabolic factors underlying root thermotolerance, with a focus on temperate perennial grass species. Comparative analysis of differential root responses to supraoptimal temperatures by a heat-adapted temperate C3 species, Agrostis scabra, which can survive high soil temperatures up to 45 °C in geothermal areas in Yellow Stone National Park, and a heat-sensitive cogeneric species, Agrostis stolonifera, suggested that efficient carbon and protein metabolism is critical for root thermotolerance. Superior root thermotolerance in a perennial grass was associated with a greater capacity to control respiratory costs through respiratory acclimation, lowering carbon investment in maintenance for protein turnover, and efficiently partitioning carbon into different metabolic pools and alternative respiration pathways. Proteomic analysis demonstrated that root thermotolerance was associated with an increased maintenance of stability and less degradation of proteins, particularly those important for metabolism and energy production. In addition, thermotolerant roots are better able to maintain growth and activity during heat stress by activating stress defence proteins such as those participating in antioxidant defence (i.e. superoxide dismutase, peroxidase, glutathione S-transferase) and chaperoning protection (i.e. heat shock protein).
منابع مشابه
Root proteomic responses to heat stress in two Agrostis grass species contrasting in heat tolerance
Protein metabolism plays an important role in plant adaptation to heat stress. This study was designed to identify heat-responsive proteins in roots associated with thermotolerance for two C3 grass species contrasting in heat tolerance, thermal Agrostis scabra and heat-sensitive Agrostis stolonifera L. Plants were exposed to 20 degrees C (control), 30 C (moderate heat stress), or 40 degrees C (...
متن کاملProteomic changes associated with expression of a gene (ipt) controlling cytokinin synthesis for improving heat tolerance in a perennial grass species
Cytokinins (CKs) are known to regulate leaf senescence and affect heat tolerance, but mechanisms underlying CK regulation of heat tolerance are not well understood. A comprehensive proteomic study was conducted to identify proteins altered by the expression of the adenine isopentenyl transferase (ipt) gene controlling CK synthesis and associated with heat tolerance in transgenic plants for a C(...
متن کاملFunctional analysis of glycin rich- RNA binding protein, a suppressor of trehalose-6-phosphate mediating growth arrest in Arabidopsis thaliana
Metabolism of the alpha-1,1 glucose disaccharide, trehalose, is indispensable in plants. In the Murashigeand Skoog (MS) medium, trehalose inhibits plant growth and allocation of carbon to roots. A suppressorof trehalose-6-phosphate (T6P) mediated growth arrest, GR-RBP2, is characterized in more detail.Phylogenetic analysis revealed that GR-RBP2 is a protein of likely prokaryot...
متن کاملRoot respiratory characteristics associated with plant adaptation to high soil temperature for geothermal and turf-type Agrostis species.
Respiration is a major avenue of carbohydrates loss. The objective of the present study was to examine root respiratory characteristics associated with root tolerance to high soil temperature for two Agrostis species: thermal Agrostis scabra, a species adapted to high-temperature soils in geothermal areas in Yellowstone National Park, and two cultivars ('L-93' and 'Penncross') of a cool-season ...
متن کاملIdentification of Leaf Proteins Differentially Accumulated between Wheat Cultivars Distinct in Their Levels of Drought Tolerance
The drought-tolerant 'Ningchun 47' (NC47) and drought-sensitive 'Chinese Spring' (CS) wheat (Triticum aestivum L.) cultivars were treated with different PEG6000 concentrations at the three-leaf stage. An analysis on the physiological and proteomic changes of wheat seedling in response to drought stress was performed. In total, 146 differentially accumulated protein (DAP) spots were separated an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 63 9 شماره
صفحات -
تاریخ انتشار 2012