Simplicial cycles and the computation of simplicial trees
نویسندگان
چکیده
We generalize the concept of a cycle from graphs to simplicial complexes. We show that a simplicial cycle is either a sequence of facets connected in the shape of a circle, or is a cone over such a structure. We show that a simplicial tree is a connected cycle-free simplicial complex, and use this characterization to produce an algorithm that checks in polynomial time whether a simplicial complex is a tree. We also present an efficient algorithm for checking whether a simplicial complex is grafted, and therefore Cohen-Macaulay.
منابع مشابه
Invariance of the barycentric subdivision of a simplicial complex
In this paper we prove that a simplicial complex is determined uniquely up to isomorphism by its barycentric subdivision as well as its comparability graph. We also put together several algebraic, combinatorial and topological invariants of simplicial complexes.
متن کاملCohen-Macaulay-ness in codimension for simplicial complexes and expansion functor
In this paper we show that expansion of a Buchsbaum simplicial complex is $CM_t$, for an optimal integer $tgeq 1$. Also, by imposing extra assumptions on a $CM_t$ simplicial complex, we provethat it can be obtained from a Buchsbaum complex.
متن کاملVertex Decomposable Simplicial Complexes Associated to Path Graphs
Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...
متن کاملDistributed computation of homology using harmonics
We present a distributed algorithm to compute the first homology of a simplicial complex. Such algorithms are very useful in topological analysis of sensor networks, such as its coverage properties. We employ spanning trees to compute a basis for algebraic 1-cycles, and then use harmonics to efficiently identify the contractible and homologous cycles. The computational complexity of the algorit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Symb. Comput.
دوره 42 شماره
صفحات -
تاریخ انتشار 2007