Molecular Effects of cTnC DCM Mutations on Calcium Sensitivity and Myofilament Activation-An Integrated Multiscale Modeling Study.

نویسندگان

  • Sukriti Dewan
  • Kimberly J McCabe
  • Michael Regnier
  • Andrew D McCulloch
  • Steffen Lindert
چکیده

Mutations in cardiac troponin C (D75Y, E59D, and G159D), a key regulatory protein of myofilament contraction, have been associated with dilated cardiomyopathy (DCM). Despite reports of altered myofilament function in these mutants, the underlying molecular alterations caused by these mutations remain elusive. Here we investigate in silico the intramolecular mechanisms by which these mutations affect myofilament contraction. On the basis of the location of cardiac troponin C (cTnC) mutations, we tested the hypothesis that intramolecular effects can explain the altered myofilament calcium sensitivity of force development for D75Y and E59D cTnC, whereas altered cardiac troponin C-troponin I (cTnC-cTnI) interaction contributes to the reported contractile effects of the G159D mutation. We employed a multiscale approach combining molecular dynamics (MD) and Brownian dynamics (BD) simulations to estimate cTnC calcium association and hydrophobic patch opening. We then integrated these parameters into a Markov model of myofilament activation to compute the steady-state force-pCa relationship. The analysis showed that myofilament calcium sensitivity with D75Y and E59D can be explained by changes in calcium binding affinity of cTnC and the rate of hydrophobic patch opening, if a partial cTnC interhelical opening angle (110°) is sufficient for cTnI switch peptide association to cTnC. In contrast, interactions between cTnC and cTnI within the cardiac troponin complex must also be accounted for to explain contractile alterations due to G159D. In conclusion, this is the first multiscale in silico study to elucidate how direct molecular effects of genetic mutations in cTnC translate to altered myofilament contractile function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting cardiomyopathic phenotypes by altering Ca2+ affinity of cardiac troponin C.

Cardiac diseases associated with mutations in troponin subunits include hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and restrictive cardiomyopathy (RCM). Altered calcium handling in these diseases is evidenced by changes in the Ca(2+) sensitivity of contraction. Mutations in the Ca(2+) sensor, troponin C (TnC), were generated to increase/decrease the Ca(2+) sensitivity of c...

متن کامل

Pathogenic peptide deviations support a model of adaptive evolution of chordate cardiac performance by troponin mutations.

In cardiac muscle, the troponin (cTn) complex is a key regulator of myofilament calcium sensitivity because it serves as a molecular switch required for translating myocyte calcium fluxes into sarcomeric contraction and relaxation. Studies of several species suggest that ectotherm chordates have myofilaments with heightened calcium responsiveness. However, genetic polymorphisms in cTn that caus...

متن کامل

Functional Analysis of a Unique Troponin C Mutation, Gly159asp, That Causes Familial Dilated Cardiomyopathy, Studied in Explant

Background. Familial dilated cardiomyopathy (DCM) can be caused by mutations in the proteins of the muscle thin filament. In vitro these mutations decrease Ca-sensitivity and crossbridge turnover rate but the mutations have not been investigated in human tissue. We have studied the Ca-regulatory properties of myocytes and troponin extracted from the explanted heart of a patient with inherited D...

متن کامل

Cardiomyopathy-Related Mutations in Cardiac Troponin C, L29Q and G159D, Have Divergent Effects on Rat Cardiac Myofiber Contractile Dynamics

Previous studies of cardiomyopathy-related mutations in cardiac troponin C (cTnC)-L29Q and G159D-have shown diverse findings. The link between such mutant effects and their divergent impact on cardiac phenotypes has remained elusive due to lack of studies on contractile dynamics. We hypothesized that a cTnC mutant-induced change in the thin filament will affect global myofilament mechanodynamic...

متن کامل

The troponin C G159D mutation blunts myofilament desensitization induced by troponin I Ser23/24 phosphorylation.

Striated muscle contraction is regulated by the binding of Ca(2+) to the N-terminal regulatory lobe of the cardiac troponin C (cTnC) subunit in the troponin complex. In the heart, beta-adrenergic stimulation induces protein kinase A phosphorylation of cardiac troponin I (cTnI) at Ser23/24 to alter the interaction of cTnI with cTnC in the troponin complex and is critical to the regulation of car...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 120 33  شماره 

صفحات  -

تاریخ انتشار 2016