Dopamine transporter/syntaxin 1A interactions regulate transporter channel activity and dopaminergic synaptic transmission.

نویسندگان

  • Lucia Carvelli
  • Randy D Blakely
  • Louis J DeFelice
چکیده

The Caenorhabditis elegans (C. elegans) dopamine (DA) transporter (DAT-1) regulates DA signaling through efficient DA reuptake following synaptic release. In addition to its DA transport function, DAT-1 generates detectable DA-gated currents that may influence neuronal excitability. Previously, we provided evidence that single Cl-channel events underlie DAT-1 currents. In these studies, we identified a distinct population of altered DAT-1 currents arising from DAT-1 transgenic constructs bearing an N-terminal GFP fusion. The presence of these channels suggested disruption of an endogenous regulatory mechanism that modulates occupancy of DAT-1 channel states. A leading candidate for such a regulator is the SNARE protein syntaxin 1A (Syn1A), previously found to interact with homologous transporters through N-terminal interactions. Here we establish that UNC-64 (C. elegans Syn1A homologue) associates with DAT-1 and suppresses transporter channel properties. In contrast, GFP::DAT-1 is unable to form stable transporter/UNC-64 complexes that limit channel states. Although DAT-1 and GFP::DAT-1 expressing DA neurons exhibit comparable DA uptake, GFP::DAT-1 animals exhibit swimming-induced paralysis (SWIP), a phenotype associated with excess synaptic DA release and spillover. We propose that loss of UNC-64/DAT-1 interactions leads to enhanced synaptic DA release, providing a novel mechanism for DA neuron sensitization that may be relevant to mechanisms of DA-associated disorders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential regulation of amphetamine-induced serotonergic and dopaminergic efflux by syntaxin 1A

Background The plasma membrane serotonin transporter (SERT) is a key regulator of synaptic serontonergic neurotransmission and is a major target of both antidepressents and psychostimulant drugs of abuse. The pre-synaptic soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein syntaxin 1A has been reported to modulate the intrinsic activity of multiple monoamine ne...

متن کامل

A regulated interaction of syntaxin 1A with the antidepressant-sensitive norepinephrine transporter establishes catecholamine clearance capacity.

Norepinephrine (NE) transporters (NETs) terminate noradrenergic synaptic transmission and represent a major therapeutic target for antidepressant medications. NETs and related transporters are under intrinsic regulation by receptor and kinase-linked pathways, and clarification of these pathways may suggest candidates for the development of novel therapeutic approaches. Syntaxin 1A, a presynapti...

متن کامل

Protein tyrosine kinase inhibitors alter human dopamine transporter activity in Xenopus oocytes.

The dopamine (DA) transporter (DAT) regulates dopaminergic synaptic transmission by controlling extracellular levels of DA. Thus, understanding signaling mechanisms that alter DAT function is critical for understanding dopaminergic neurotransmission. We have expressed the human DAT (hDAT) in Xenopus laevis oocytes to test the hypothesis that protein tyrosine kinases (PTKs) acutely regulate DAT ...

متن کامل

A C-terminal PDZ domain binding sequence is required for striatal distribution of the dopamine transporter

The dopamine transporter mediates reuptake of dopamine from the synaptic cleft. The cellular mechanisms controlling dopamine transporter levels in striatal nerve terminals remain poorly understood. The dopamine transporters contain a C-terminal PDZ (PSD-95/Discs-large/ZO-1) domain-binding sequence believed to bind synaptic scaffolding proteins, but its functional significance is uncertain. Here...

متن کامل

Elimination of the Vesicular Acetylcholine Transporter in the Striatum Reveals Regulation of Behaviour by Cholinergic-Glutamatergic Co-Transmission

Cholinergic neurons in the striatum are thought to play major regulatory functions in motor behaviour and reward. These neurons express two vesicular transporters that can load either acetylcholine or glutamate into synaptic vesicles. Consequently cholinergic neurons can release both neurotransmitters, making it difficult to discern their individual contributions for the regulation of striatal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 37  شماره 

صفحات  -

تاریخ انتشار 2008