Time-resolved electron microscopic analysis of the behavior of myosin heads on actin filaments after photolysis of caged ATP
نویسندگان
چکیده
The interaction between myosin subfragment 1 (S1) and actin filaments after the photolysis of P3-1-(2-nitrophenyl)ethyl ester of ATP (caged ATP) was analyzed with a newly developed freezing system using liquid helium. Actin and S1 (100 microM each) formed a ropelike double-helix characteristic of rigor in the presence of 5 mM caged ATP at room temperature. At 15 ms after photolysis, the ropelike double helix was partially disintegrated. The number of S1 attached to actin filaments gradually decreased up to 35 ms after photolysis, and no more changes were detected from 35 to 200 ms. After depletion of ATP, the ropelike double helix was reformed. Taking recent analyses of actomyosin kinetics into consideration, we concluded that most S1 observed on actin filaments at 35-200 ms are so called "weakly bound S1" (S1.ATP or S1.ADP.Pi) and that the weakly bound S1 under a rapid association-dissociation equilibrium with actin filaments can be captured by electron microscopy by means of our newly developed freezing system. This enabled us to directly compare the conformation of weakly and strongly bound S1. Within the resolution of deep-etch replica technique, there were no significant conformational differences between weakly and strongly bound S1, and neither types of S1 showed any positive cooperativity in their binding to actin filaments. Close comparison revealed that the weakly and strongly bound S1 have different angles of attachment to actin filaments. As compared to strongly bound S1, weakly bound S1 showed a significantly broader distribution of attachment angles. These results are discussed with special reference to the molecular mechanism of acto-myosin interaction in the presence of ATP.
منابع مشابه
Blitz and blizzard: crossbridges and chaos.
The central goal in muscle biophysics is to detect directly the force-generating structural changes of the acto-myosin crossbridge. The principal hypothesis to be tested is that chemical transitions in the ATP hydrolysis cycle are coupled to myosin head rotation between two or more distinct orientations on actin, but a wide range of physical techniques, including electron microscopy, have not p...
متن کاملElectron microscopic recording of myosin head power stroke in hydrated myosin filaments
Muscle contraction results from cyclic attachment and detachment between myosin heads and actin filaments, coupled with ATP hydrolysis. Despite extensive studies, however, the amplitude of myosin head power stroke still remains to be a mystery. Using the gas environmental chamber, we have succeeded in recording the power stroke of position-marked myosin heads in hydrated mixture of actin and my...
متن کاملSingle turnovers of fluorescent ATP bound to bipolar myosin filament during actin filaments sliding
The nucleotide turnover rates of bipolar myosin thick filament along which actin filament slides were measured by the displacement of prebound fluorescent ATP analog 2'(3')-O-[N-[2-[(Cy3)]amindo]ethyl] carbamoyl]-adenosine 5' triphosphate (Cy3-EDA-ATP) upon flash photolysis of caged ATP. The fluorescence of the thick filament where actin filament slides decayed with two exponential processes. T...
متن کاملEffect of pH on the rate of myosin head detachment in molluscan catch muscle: are myosin heads involved in the catch state?
Moderate alkalisation is known to terminate the catch state of bivalve mollusc smooth muscles such as the anterior byssus retractor muscle (ABRM) of Mytilus edulis L. In the present study, we investigated the effect of moderate alkalisation (pH 7.2-7.7 vs control pH 6.7) on the myosin head detachment rate in saponin-skinned fibre bundles of ABRM in order to investigate the possible role of myos...
متن کاملEvidence for the load-dependent mechanical efficiency of individual myosin heads in skeletal muscle fibers activated by laser flash photolysis of caged calcium in the presence of a limited amount of ATP.
Although a contracting muscle regulates its energy output depending on the load imposed on it ("Fenn effect"), the mechanism underlying the load-dependent energy output remains obscure. To explore the possibility that the mechanical efficiency, with which chemical energy derived from ATP hydrolysis is converted into mechanical work, of individual myosin heads changes in a load-dependent manner,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 121 شماره
صفحات -
تاریخ انتشار 1993