Nitrite and Hydroxylamine as Nitrogenase Substrates: Mechanistic Implications for the Pathway of N2 Reduction
نویسندگان
چکیده
Investigations of reduction of nitrite (NO2(-)) to ammonia (NH3) by nitrogenase indicate a limiting stoichiometry, NO2(-) + 6e(-) + 12ATP + 7H(+) → NH3 + 2H2O + 12ADP + 12Pi. Two intermediates freeze-trapped during NO2(-) turnover by nitrogenase variants and investigated by Q-band ENDOR/ESEEM are identical to states, denoted H and I, formed on the pathway of N2 reduction. The proposed NO2(-) reduction intermediate hydroxylamine (NH2OH) is a nitrogenase substrate for which the H and I reduction intermediates also can be trapped. Viewing N2 and NO2(-) reductions in light of their common reduction intermediates and of NO2(-) reduction by multiheme cytochrome c nitrite reductase (ccNIR) leads us to propose that NO2(-) reduction by nitrogenase begins with the generation of NO2H bound to a state in which the active-site FeMo-co (M) has accumulated two [e(-)/H(+)] (E2), stored as a (bridging) hydride and proton. Proton transfer to NO2H and H2O loss leaves M-[NO(+)]; transfer of the E2 hydride to the [NO(+)] directly to form HNO bound to FeMo-co is one of two alternative means for avoiding formation of a terminal M-[NO] thermodynamic "sink". The N2 and NO2(-) reduction pathways converge upon reduction of NH2NH2 and NH2OH bound states to form state H with [-NH2] bound to M. Final reduction converts H to I, with NH3 bound to M. The results presented here, combined with the parallels with ccNIR, support a N2 fixation mechanism in which liberation of the first NH3 occurs upon delivery of five [e(-)/H(+)] to N2, but a total of seven [e(-)/H(+)] to FeMo-co when obligate H2 evolution is considered, and not earlier in the reduction process.
منابع مشابه
Metagenomic potential for and diversity of N‐cycle driving microorganisms in the Bothnian Sea sediment
The biological nitrogen cycle is driven by a plethora of reactions transforming nitrogen compounds between various redox states. Here, we investigated the metagenomic potential for nitrogen cycle of the in situ microbial community in an oligotrophic, brackish environment of the Bothnian Sea sediment. Total DNA from three sediment depths was isolated and sequenced. The characterization of the to...
متن کاملShort-term nitrate (nitrite) inhibition of nitrogen fixation in Azotobacter chroococcum.
Nitrate-grown Azotobacter chroococcum ATCC 4412 cells lack the ability to fix N2. Nitrogenase activity developed after the cells were suspended in a combined nitrogen-free medium and was paralleled by a concomitant decrease in nitrate assimilation capacity. In such treated cells exhibiting transitory nitrate assimilation and N2-fixation capacity, nitrate or nitrite caused a short-term inhibitor...
متن کاملNitrate ammonification by Nautilia profundicola AmH: experimental evidence consistent with a free hydroxylamine intermediate
The process of nitrate reduction via nitrite controls the fate and bioavailability of mineral nitrogen within ecosystems; i.e., whether it is retained as ammonium (ammonification) or lost as nitrous oxide or dinitrogen (denitrification). Here, we present experimental evidence for a novel pathway of microbial nitrate reduction, the reverse hydroxylamine:ubiquinone reductase module (reverse-HURM)...
متن کاملPentahaem cytochrome c nitrite reductase: reaction with hydroxylamine, a potential reaction intermediate and substrate.
The pentahaem enzyme cytochrome c nitrite reductase catalyses the reduction of nitrite to ammonia, a key reaction in the biological nitrogen cycle. The enzyme can also transform nitrogen monoxide and hydroxylamine, two potential bound reaction intermediates, into ammonia. Structural and mechanistic aspects of the multihaem enzyme are discussed in comparison with hydroxylamine oxidoreductase, a ...
متن کاملInteractions among substrates and inhibitors of nitrogenase.
Examination of interactions among various substrates and inhibitors reacting with a partially purified nitrogenase from Azotobacter vinelandii has shown that: nitrous oxide is competitive with N2; carbon monixide and acetylene are noncompetitive with N2; carbon monoxide, cyanide, and nitrous oxide are noncompetitive with acetylene, whereas N2 is competitive with acetylene; carbon monoxide is no...
متن کامل