The Endo-siRNA Pathway Is Essential for Robust Development of the Drosophila Embryo
نویسندگان
چکیده
BACKGROUND Robustness to natural temperature fluctuations is critical to proper development in embryos and to cellular functions in adult organisms. However, mechanisms and pathways which govern temperature compensation remain largely unknown beyond circadian rhythms. Pathways which ensure robustness against temperature fluctuations may appear to be nonessential under favorable, uniform environmental conditions used in conventional laboratory experiments where there is little variation for which to compensate. The endo-siRNA pathway, which produces small double-stranded RNAs in Drosophila, appears to be nonessential for robust development of the embryo under ambient uniform temperature and to be necessary only for viral defense. Embryos lacking a functional endo-siRNA pathway develop into phenotypically normal adults. However, we hypothesized that small RNAs may regulate the embryo's response to temperature, as a ribonucleoprotein complex has been previously shown to mediate mammalian cell response to heat shock. PRINCIPAL FINDINGS Here, we show that the genes DICER-2 and ARGONAUTE2, which code for integral protein components of the endo-siRNA pathway, are essential for robust development and temperature compensation in the Drosophila embryo when exposed to temperature perturbations. The regulatory functions of DICER-2 and ARGONAUTE2 were uncovered by using microfluidics to expose developing Drosophila embryos to a temperature step, in which each half of the embryo develops at a different temperature through developmental cycle 14. Under this temperature perturbation, dicer-2 or argonaute2 embryos displayed abnormal segmentation. The abnormalities in segmentation are presumably due to the inability of the embryo to compensate for temperature-induced differences in rate of development and to coordinate developmental timing in the anterior and posterior halves. A deregulation of the length of nuclear division cycles 10-14 is also observed in dicer-2 embryos at high temperatures. CONCLUSIONS Results presented herein uncover a novel function of the endo-siRNA pathway in temperature compensation and cell cycle regulation, and we hypothesize that the endo-siRNA pathway may regulate the degradation of maternal cell cycle regulators. Endo-siRNAs may have a more general role buffering against environmental perturbations in other organisms.
منابع مشابه
DEAD-box RNA helicase Belle/DDX3 and the RNA interference pathway promote mitotic chromosome segregation.
During mitosis, faithful inheritance of genetic material is achieved by chromosome segregation, as mediated by the condensin I and II complexes. Failed chromosome segregation can result in neoplasm formation, infertility, and birth defects. Recently, the germ-line-specific DEAD-box RNA helicase Vasa was demonstrated to promote mitotic chromosome segregation in Drosophila by facilitating robust ...
متن کاملFormulation of a therapeutic cationic liposome-siRNA complex for development to fight osteosarcoma
Introdution: Cationic liposomes have been presented for gene delivery as an alternative vector instead of viral vectors. A major challenge associated with siRNA delivery is the instability of liposomes, which is still a serious problem. The aim of this study was to provide an appropriate formulation to overcome this instability. Methods: In the present study (Scientific-Fundamental, Experiment...
متن کاملThe hub protein loquacious connects the microRNA and short interfering RNA pathways in mosquitoes
Aedes aegypti mosquitoes vector several arboviruses of global health significance, including dengue viruses and chikungunya virus. RNA interference (RNAi) plays an important role in antiviral immunity, gene regulation and protection from transposable elements. Double-stranded RNA binding proteins (dsRBPs) are important for efficient RNAi; in Drosophila functional specialization of the miRNA, en...
متن کاملEndo-siRNAs depend on a new isoform of loquacious and target artificially introduced, high-copy sequences.
Colonization of genomes by a new selfish genetic element is detrimental to the host species and must lead to an efficient, repressive response. In vertebrates as well as in Drosophila, piRNAs repress transposons in the germ line, whereas endogenous siRNAs take on this role in somatic cells. We show that their biogenesis depends on a new isoform of the Drosophila TRBP homologue loquacious, which...
متن کاملThe endogenous siRNA pathway is involved in heterochromatin formation in Drosophila.
A new class of small RNAs (endo-siRNAs) produced from endogenous double-stranded RNA (dsRNA) precursors was recently shown to mediate transposable element (TE) silencing in the Drosophila soma. These endo-siRNAs might play a role in heterochromatin formation, as has been shown in S. pombe for siRNAs derived from repetitive sequences in chromosome pericentromeres. To address this possibility, we...
متن کامل