K-theoretic J-functions of Type a Flag Varieties

نویسنده

  • K. TAIPALE
چکیده

The J-function in Gromov-Witten theory is a generating function for one-point genus zero Gromov-Witten invariants with descendants. Here we give formulas for the quantum K-theoretic J-functions of type A flag manifolds. As an application, we prove the quantum K-theoretic J-function version of the abelian-nonabelian correspondence for Grassmannians and products of projective space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 00 5 on Some Noncommutative Algebras Related with K - Theory of Flag Varieties , I

For any Lie algebra of classical type or type G 2 we define a K-theoretic analog of Dunkl's elements, the so-called truncated Ruijsenaars-Schneider-Macdonald elements, RSM-elements for short, in the corresponding Yang-Baxter group, which form a commuting family of elements in the latter. For the root systems of type A we prove that the subalgebra of the bracket algebra generated by the RSM-elem...

متن کامل

On Some Noncommutative Algebras Related with K - Theory of Flag Varieties , I

For any Lie algebra of classical type or type G 2 we define a K-theoretic analog of Dunkl's elements, the so-called truncated Ruijsenaars-Schneider-Macdonald elements, RSM-elements for short, in the corresponding Yang-Baxter group, which form a commuting family of elements in the latter. For the root systems of type A we prove that the subalgebra of the bracket algebra generated by the RSM-elem...

متن کامل

On Some Noncommutative Algebras Related to K - Theory of Flag Varieties , Part

For any Lie algebra of classical type or type G 2 we define a K-theoretic analog of Dunkl's elements, the so-called truncated Ruijsenaars-Schneider-Macdonald elements, RSM-elements for short, in the corresponding Yang-Baxter group, which form a commuting family of elements in the latter. For the root systems of type A we prove that the subalgebra of the bracket algebra generated by the RSM-elem...

متن کامل

1 3 Fe b 20 06 ON SOME NONCOMMUTATIVE ALGEBRAS RELATED TO K - THEORY OF FLAG VARIETIES , PART

For any Lie algebra of classical type or type G 2 we define a K-theoretic analog of Dunkl's elements, the so-called truncated Ruijsenaars-Schneider-Macdonald elements, RSM-elements for short, in the corresponding Yang-Baxter group, which form a commuting family of elements in the latter. For the root systems of type A we prove that the subalgebra of the bracket algebra generated by the RSM-elem...

متن کامل

Restriction Varieties and Geometric Branching Rules

This paper develops a new method for studying the cohomology of orthogonal flag varieties. Restriction varieties are subvarieties of orthogonal flag varieties defined by rank conditions with respect to (not necessarily isotropic) flags. They interpolate between Schubert varieties in orthogonal flag varieties and the restrictions of general Schubert varieties in ordinary flag varieties. We give ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011