Cadmium-Containing Carbonic Anhydrase CDCA1 in Marine Diatom Thalassiosira weissflogii
نویسندگان
چکیده
The Carbon Concentration Mechanism (CCM) allows phytoplakton species to accumulate the dissolved inorganic carbon (DIC) necessary for an efficient photosynthesis even under carbon dioxide limitation. In this mechanism of primary importance for diatoms, a key role is played by carbonic anhydrase (CA) enzymes which catalyze the reversible hydration of CO2, thus taking part in the acquisition of inorganic carbon for photosynthesis. A novel CA, named CDCA1, has been recently discovered in the marine diatom Thalassiosira weissflogii. CDCA1 is a cambialistic enzyme since it naturally uses Cd2+ as catalytic metal ion, but if necessary can spontaneously exchange Cd2+ to Zn2+. Here, the biochemical and structural features of CDCA1 enzyme will be presented together with its putative biotechnological applications for the detection of metal ions in seawaters.
منابع مشابه
A biological function for cadmium in marine diatoms.
The oceanic distribution of cadmium follows closely that of major algal nutrients such as phosphate. The reasons for this "nutrient-like" distribution are unclear, however, because cadmium is not generally believed to have a biological function. Herein, we provide evidence of a biological role for Cd in the marine diatom Thalassiosira weissflogii under conditions of low zinc, typical of the mar...
متن کاملResponses of Zn assimilation by coastal plankton to macronutrients
We examined the Zn uptake in marine diatoms and its transfer to marine copepods under different nutrient-replete and -deplete conditions. Zn uptake, quantified by measurements of both total cellular and intracellular Zn accumulation in two coastal diatoms (Thalassiosira pseudonana and Thalassiosira weissflogii), was greatly dependent on the ambient nitrogen conditions. Semicontinuous culture ex...
متن کاملH2S - studi pubblicati nel mese di novembre 2013
We investigated the catalytic activity and inhibition of the delta-class carbonic anhydrase (CA, EC 4.2.1.1) from the marine diatom Thalassiosira weissflogii, TweCA. The enzyme, obtained by cloning the synthetic gene, was an efficient catalyst for the CO2 hydration, its physiological reaction, with a kcat of 1.3x105s-1 and a kcat/KM of 3.3x107M-1s-1. A range of inorganic anions and small molecu...
متن کاملResponses of the marine diatom Thalassiosira pseudonana to changes in CO2 concentration: a proteomic approach
The concentration of CO2 in many aquatic systems is variable, often lower than the KM of the primary carboxylating enzyme Rubisco, and in order to photosynthesize efficiently, many algae operate a facultative CO2 concentrating mechanism (CCM). Here we measured the responses of a marine diatom, Thalassiosira pseudonana, to high and low concentrations of CO2 at the level of transcripts, proteins ...
متن کاملChanges in the non-protein thiol pool and production of dissolved gaseous mercury in the marine diatom Thalassiosira weissflogii under mercury exposure.
Two detoxification mechanisms working in the marine diatom Thalassiosira weissflogii to cope with mercury toxicity were investigated. Initially, the effect of mercury on the intracellular pool of non-protein thiols was studied in exponentially growing cultures exposed to sub-toxic HgCl(2) concentrations. T. weissflogii cells responded by synthesizing metal-binding peptides, named phytochelatins...
متن کامل