An Optimal Convergence Rate for the Gaussian Regularized Shannon Sampling Series

نویسنده

  • Rongrong Lin
چکیده

In this article, we consider the reconstruction of a bandlimited function from its finite localized sample data. Truncating the classical Shannon sampling series results in an unsatisfactory convergence rate due to the slow decay of the sinc function. To overcome this drawback, a simple and highly effective method, called the Gaussian regularization of the Shannon series, was proposed in the engineering and has received remarkable attention. It works by multiplying the sinc function in the Shannon series with a regularized Gaussian function. Recently, it was proved that the upper error bound of this method can achieve the convergence rate of the order O( 1 √ n exp(−π−δ 2 n)), where 0 < δ < π is the bandwidth and n is the number of sample data. The convergence rate is by far the best convergence rate among all regularized methods for the Shannon sampling series. The main objective of this article is to present the theoretical justification and numerical verification that such convergence rate is optimal when 0 < δ < π/2 by estimating the lower error bound of the truncated Gaussian regularized Shannon sampling series.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence Analysis of the Gaussian Regularized Shannon Sampling Formula

We consider the reconstruction of a bandlimited function from its finite localized sample data. Truncating the classical Shannon sampling series results in an unsatisfactory convergence rate due to the slow decayness of the sinc function. To overcome this drawback, a simple and highly effective method, called the Gaussian regularization of the Shannon series, was proposed in engineering and has...

متن کامل

The Rate of Entropy for Gaussian Processes

In this paper, we show that in order to obtain the Tsallis entropy rate for stochastic processes, we can use the limit of conditional entropy, as it was done for the case of Shannon and Renyi entropy rates. Using that we can obtain Tsallis entropy rate for stationary Gaussian processes. Finally, we derive the relation between Renyi, Shannon and Tsallis entropy rates for stationary Gaussian proc...

متن کامل

THE EFFECTS OF INITIAL SAMPLING AND PENALTY FUNCTIONS IN OPTIMAL DESIGN OF TRUSSES USING METAHEURISTIC ALGORITHMS

Although Genetic algorithm (GA), Ant colony (AC) and Particle swarm optimization algorithm (PSO) have already been extended to various types of engineering problems, the effects of initial sampling beside constraints in the efficiency of algorithms, is still an interesting field. In this paper we show that, initial sampling with a special series of constraints play an important role in the conv...

متن کامل

Complete convergence of moving-average processes under negative dependence sub-Gaussian assumptions

The complete convergence is investigated for moving-average processes of doubly infinite sequence of negative dependence sub-gaussian random variables with zero means, finite variances and absolutely summable coefficients. As a corollary, the rate of complete convergence is obtained under some suitable conditions on the coefficients.

متن کامل

Optimization of Solution Regularized Long-wave Equation by Using Modified Variational Iteration Method

In this paper, a regularized long-wave equation (RLWE) is solved by using the Adomian's decomposition method (ADM) , modified Adomian's decomposition method (MADM), variational iteration method (VIM), modified variational iteration method (MVIM) and homotopy analysis method (HAM). The approximate solution of this equation is calculated in the form of series which its components are computed by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017