Modulation of motor cortex excitability by different levels of whole-hand afferent electrical stimulation.
نویسندگان
چکیده
OBJECTIVE In a previous transcranial magnetic stimulation (TMS) study we demonstrated that suprathreshold mesh-glove (MG) whole-hand stimulation elicits lasting changes in motor cortical excitability. Currently, there is no consensus with regard to the optimal parameters for the induction of sensorimotor cortical plasticity using peripheral electrical stimulation. Thus, in the present study we explore the modulatory effects of MG stimulation at different stimulus intensities and different frequencies in order to identify an optimal stimulation protocol. METHODS MG stimulation was performed on 12 healthy subjects in separate sessions at different stimulation levels: sub-sensory at 50 Hz, sensory at 50 Hz and motor at 2 Hz. To verify if stimulation at lower frequencies is less effective, an additional experiment at sensory level with 2 Hz was performed. TMS was used to assess motor threshold (MT), motor evoked potentials (MEPs) recruitment curve (RC), short latency intracortical inhibition (SICI) and intracortical facilitation (ICF) to paired-pulse TMS at baseline (T0), immediately after (T1) and 1h (T2) after 30 min of MG stimulation. F-wave studies were performed to assess spinal motoneuron excitability. RESULTS MG stimulation at sub-sensory/50 Hz and sensory/2 Hz level determines no significant cortical excitability changes; at sensory/50 Hz level and at motor/2 Hz level we found decreased MT, increased MEP RC as well as reduced SICI and increased ICF at T1 and T2. CONCLUSIONS MG stimulation at sensory/50 Hz and motor/2 Hz level induces similar long-lasting modulatory effects on motor cortical excitability. Both the strength of the corticospinal projections and the intracortical networks are influenced to the same extend. SIGNIFICANCE The study provides further evidence that stimulation intensity and frequency can independently modulate motor cortical plasticity. The selection of optimal stimulation parameters has potentially important implications for the neurorehabilitation of patients after brain damage (e.g. stroke, traumatic brain injury) with hand motor deficits.
منابع مشابه
MEDIAN NERVE STIMULATION PO TENTIATES THE MU SCLE RESPONSES TO TRANS C RANIAL MAGNETIC STIMULATION
Motor responses evoked by transcranial magnetic stimulation OMS) or transcranial electrical stimulation (TCS) can be facilitated by a prior conditioning stimulus to an afferent nerve. Two facilitation periods are described short (SI), when the nerve stimulus is given near 0 to 10 ms after cranial stimulation, and long (LI), when nerve stimulation is given 25-60 ms before the cranial stimula...
متن کاملModulatory effects on human sensorimotor cortex by whole-hand afferent electrical stimulation.
OBJECTIVE To investigate the effect of electrical stimulation of the nerve afferents of the hand on cortical activity elicited by whole-hand subthreshold stimulation for sensation in healthy human subjects. METHODS Ten healthy volunteers were studied using BOLD-fMRI with 1) a test motor-task with finger-to-thumb tapping of the left hand, 2) a whole-hand afferent electrical stimulation of the ...
متن کاملWhole-hand water flow stimulation increases motor cortical excitability: a study of transcranial magnetic stimulation and movement-related cortical potentials.
Previous studies examining the influence of afferent stimulation on corticospinal excitability have demonstrated that the intensity of afferent stimulation and the nature of the afferents targeted (cutaneous/proprioceptive) determine the effects. In this study, we assessed the effects of whole-hand water immersion (WI) and water flow stimulation (WF) on corticospinal excitability and intracorti...
متن کاملDifferential effects of motor task on cortical excitability induced by cutaneous input
The input-output organization has been considered to be crucial for fine and discrete movements in primates (1). The cortical sensori-motor integration in humans, in particular, plays an important role in the precise motor execution. For instance, the final execution from the cortical command definitely needs the peripheral feedback of sensory information. In view of the afferent information su...
متن کاملStimulation-induced changes in lower limb corticomotor excitability during treadmill walking in humans.
Magnetic stimulation of human primary motor cortex (M1) paired with electrical stimulation of a peripheral motor nerve has been used to produce a lasting modulation of corticomotor (CM) excitability. This 'paired associative stimulation' (PAS) protocol has been used to induce bidirectional changes in excitability in upper limb CM pathways. The present study tested the hypothesis that temporally...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology
دوره 123 1 شماره
صفحات -
تاریخ انتشار 2012