ON THE SPECTRAL PROBLEM Lu = λu′ AND APPLICATIONS

نویسندگان

  • MILENA STANISLAVOVA
  • ATANAS STEFANOV
چکیده

We develop a general instability index theory for an eigenvalue problem of the type Lu = λu′, for a class of self-adjoint operators L on the line R. More precisely, we construct an Evans-like function to show (a real eigenvalue) instability in terms of a Vakhitov-Kolokolov type condition on the wave. If this condition fails, we show by means of Lyapunov-Schmidt reduction arguments and the Kapitula-Kevrekidis-Sandstede index theory that spectral stability holds. Thus, we have a complete spectral picture, under fairly general assumptions on L. We apply the theory to a wide variety of examples. For the generalized Bullough-Dodd-Tzitzeica type models, we give instability results for travelling waves. For the generalized short pulse/Ostrovsky/Vakhnenko model, we construct (almost) explicit peakon solutions, which are found to be unstable, for all values of the parameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Theory of Anti-Selfdual Lagrangians: Nonlinear case

The theory of anti-selfdual (ASD) Lagrangians developed in [4] allows a variational resolution for equations of the form Λu+Au+f ∈ −∂φ(u) where φ is a convex lower-semi-continuous function on a reflexive Banach space X , f ∈ X, A : D(A) ⊂ X → X is a skew-adjoint linear operator and where Λ : D(Λ) ⊂ X → X is a non-linear operator that satisfies suitable continuity properties. ASD Lagrangians on ...

متن کامل

1 0 Se p 20 04 On U - Dominant Dimension ∗ †

Let Λ and Γ be artin algebras and ΛUΓ a faithfully balanced selforthogonal bimodule. We show that the U -dominant dimensions of ΛU and UΓ are identical. As applications to the results obtained, we give some characterizations of double dual functors (with respect to ΛUΓ) preserving monomorphisms and being left exact respectively.

متن کامل

MAT 280: Laplacian Eigenfunctions: Theory, Applications, and Computations Lectures 14: Shape Recognition Using Laplacian Eigenvalues and Computational Methods of Laplacian Eigenvalues/Eigenfunctions

In this section, we will introduce the work of Kbabou, Hermi, and Rhonma (2007)[2]. Their main idea is to use the eigenvalues and their ratios of the Dirichlet-Laplacian for various planar shapes as their features for classifying them. Let the sequence 0 < λ 1 < λ 2 ≤ λ 3 ≤ · · · ≤ λ k ≤ · · · → ∞ be the sequence of eigenvalues of Dirichlet-Laplacian problem: −∆u = λu in a given bounded planar ...

متن کامل

Existence of positive solutions for n+2 order p-Laplacian BVP

Under some suitable assumptions, we show that the n + 2 order non-linear boundary value problems (BVP1)  (E1) [φp(u (n)(t))]′′ = f (t, u(t), u(1)(t), . . . , u(n+1)(t)) (BC1)  u(i)(0) = 0, i = 0, 1, 2, . . . , n − 3, u(n−1)(1) = 0 u(n−2)(0) = λu(n−1)(η) u(n+1)(0) = α1u (n+1)(ξ) u(n)(1) = β1u (n)(ξ) and (BVP2)  (E2) [φp(u (n)(t))]′′ = f (t, u(t), u(1)(t)...

متن کامل

Anti-selfdual Hamiltonians: Variational resolutions for Navier-Stokes and other nonlinear evolutions

The theory of anti-selfdual (ASD) Lagrangians developed in [8] allows a variational resolution for equations of the form Λu+Au+∂φ(u)+f = 0 where φ is a convex lower-semi-continuous function on a reflexive Banach space X, f ∈ X∗, A : D(A) ⊂ X → X∗ is a positive linear operator and where Λ : D(Λ) ⊂ X → X∗ is a non-linear operator that satisfies suitable continuity and anti-symmetry properties. AS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015