Spectral Similarity and PRI Variations for a Boreal Forest Stand Using Multi-angular Airborne Imagery
نویسندگان
چکیده
The photochemical reflectance index (PRI) is a proxy for light use efficiency (LUE), and is used in remote sensing to measure plant stress and photosynthetic downregulation in plant canopies. It is known to depend on local light conditions within a canopy indicating non-photosynthetic quenching of incident radiation. Additionally, when measured from a distance, canopy PRI depends on shadow fraction—the fraction of shaded foliage in the instantaneous field of view of the sensor—due to observation geometry. Our aim is to quantify the extent to which sunlit fraction alone can describe variations in PRI so that it would be possible to correct for its variation and identify other possible factors affecting the PRI–sunlit fraction relationship. We used a high spatial and spectral resolution Aisa Eagle airborne imaging spectrometer above a boreal Scots pine site in Finland (Hyytiälä forest research station, 61◦50′N, 24◦17′E), with the sensor looking in nadir and tilted (off-nadir) directions. The spectral resolution of the data was 4.6 nm, and the spatial resolution was 0.6 m. We compared the PRI for three different scatter angles (β = 19◦, 55◦ and 76◦, defined as the angle between sensor and solar directions) at the forest stand level, and observed a small (0.006) but statistically significant (p < 0.01) difference in stand PRI. We found that stand mean PRI was not a direct function of sunlit fraction. However, for each scatter angle separately, we found a clear non-linear relationship between PRI and sunlit fraction. The relationship was systematic and had a similar shape for all of the scatter angles. As the PRI–sunlit fraction curves for the different scatter angles were shifted with respect to each other, no universal curve could be found causing the observed independence of canopy PRI from the average sunlit fraction of each view direction. We found the shifts of the curves to be related to a leaf structural effect on canopy scattering: the ratio of needle spectral reflectance to transmittance. We demonstrate that modeling PRI–sunlit fraction relationships using high spatial resolution imaging spectroscopy data is suitable and needed in order to quantify PRI variations over forest canopies.
منابع مشابه
Determination of Stand Properties in Boreal and Temperate Forests Using High-Resolution Imagery
The existence of a relatively long (ca. 40 yr) satellite imagery archive for examination of potential worldwide forest change motivated an inspection of the relation between forest features observable from higher resolution airborne and satellite imagery and measures of forest biomass, height, and age. Using these data, we inspected the relation between stand age, mean diameter, height, and sta...
متن کاملInvestigating Relationships Between Land-Cover, Forest Structure, and In-Situ and Airborne Passive Microwave Snow Water Equivalent in a Boreal Forest Environment
The Meteorological Service of Canada (MSC) has developed a suite of land-cover sensitive algorithms to extract snow water equivalent (SWE) estimates from satellite passive microwave brightness temperatures. In the boreal forest, however, accurate passive microwave SWE retrievals using the MSC coniferous forest algorithm are hampered by consistent under-estimation. In February 2003, a collection...
متن کاملModeling Stand Height, Volume, and Biomass from Very High Spatial Resolution Satellite Imagery and Samples of Airborne LiDAR
Plot-based sampling with ground measurements or photography is typically used to establish and maintain National Forest Inventories (NFI). The re-measurement phase of the Canadian NFI is an opportunity to develop novel methods for the estimation of forest attributes such as stand height, crown closure, volume, and aboveground biomass (AGB) from satellite, rather than, airborne imagery. Based on...
متن کاملImprovement of Biomass Estimation in Forest Areas based on Polarimetric Parameters Optimization of SETHI airborne Data using Particle Swarm Optimization Method
Estimation of forest biomass has received much attention in recent decades. Airborne and spaceborne (SAR) have a great potential to quantify biomass and structural diversity because of its penetration capability. Polarizations are important elements in SAR systems due to sensitivity of them to backscattering mechanisms and can be useful to estimate biomass. Full Polarimetric Synthetic Aperture ...
متن کامل3D Classification of Urban Features Based on Integration of Structural and Spectral Information from UAV Imagery
Three-dimensional classification of urban features is one of the important tools for urban management and the basis of many analyzes in photogrammetry and remote sensing. Therefore, it is applied in many applications such as planning, urban management and disaster management. In this study, dense point clouds extracted from dense image matching is applied for classification in urban areas. Appl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017