Graphene oxidation: thickness-dependent etching and strong chemical doping.

نویسندگان

  • Li Liu
  • Sunmin Ryu
  • Michelle R Tomasik
  • Elena Stolyarova
  • Naeyoung Jung
  • Mark S Hybertsen
  • Michael L Steigerwald
  • Louis E Brus
  • George W Flynn
چکیده

Patterned graphene shows substantial potential for applications in future molecular-scale integrated electronics. Environmental effects are a critical issue in a single-layer material where every atom is on the surface. Especially intriguing is the variety of rich chemical interactions shown by molecular oxygen with aromatic molecules. We find that O 2 etching kinetics vary strongly with the number of graphene layers in the sample. Three-layer-thick samples show etching similar to bulk natural graphite. Single-layer graphene reacts faster and shows random etch pits in contrast to natural graphite where nucleation occurs at point defects. In addition, basal plane oxygen species strongly hole dope graphene, with a Fermi level shift of approximately 0.5 eV. These oxygen species desorb partially in an Ar gas flow, or under irradiation by far UV light, and readsorb again in an O 2 atmosphere at room temperature. This strongly doped graphene is very different from "graphene oxide" made by mineral acid attack.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular doping of graphene.

Graphene is considered as one of the most promising materials for post silicon electronics, as it combines high electron mobility with atomic thickness [Novoselov et al. Science 2004, 306, 666-669. Novoselov et al. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 10451-10453]. The possibility of chemical doping and related excellent chemical sensor properties of graphene have been demonstrated experime...

متن کامل

Graphene processing using electron beam assisted metal deposition and masked chemical vapor deposition growth

The fabrication of graphene devices can be challenging due to exposure to harsh chemicals and mechanical wear such as ultrasonication used for cleaning in photolithography and metal deposition. Common graphene processing methods often damage fragile graphene sheets and can ruin the device during fabrication. The authors report a facile method to overcome many of these challenges, which is speci...

متن کامل

The influence of intercalated oxygen on the properties of graphene on polycrystalline Cu under various environmental conditions.

Intercalation of oxygen at the interface of graphene grown by chemical vapour deposition and its polycrystalline copper catalyst can have a strong impact on the electronic, chemical and structural properties of both the graphene and the Cu. This can affect the oxidation resistance of the metal as well as subsequent graphene transfer. Here, we show, using near ambient pressure X-ray photoelectro...

متن کامل

Tunable doping of graphene nanoribbon arrays by chemical functionalization.

We demonstrate the controlled tuning of the electronic band structure of large-arrays of graphene nanoribbons (GNRs) by chemical functionalization. The GNR arrays are synthesized by substrate-controlled metal-assisted etching of graphene in H2 at high temperature, and functionalized with different molecules. From Raman spectroscopy and carrier transport measurements, we found that 4-nitrobenzen...

متن کامل

Spontaneous and strong multi-layer graphene n-doping on soda-lime glass and its application in graphene-semiconductor junctions

Scalable and low-cost doping of graphene could improve technologies in a wide range of fields such as microelectronics, optoelectronics, and energy storage. While achieving strong p-doping is relatively straightforward, non-electrostatic approaches to n-dope graphene, such as chemical doping, have yielded electron densities of 9.5 × 10(12) e/cm(2) or below. Furthermore, chemical doping is susce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 8 7  شماره 

صفحات  -

تاریخ انتشار 2008