Early Intensive Insulin Use May Preserve β-Cell Function in Neonatal Diabetes Due to Mutations in the Proinsulin Gene
نویسندگان
چکیده
Although mutations in the proinsulin gene (INS) are the second most common cause of neonatal diabetes mellitus, the natural history of β-cell death and the most appropriate treatments remains unknown. We describe the management and outcome of two sisters with INS-mediated diabetes (S1 and S2) and suggest that more intensive insulin treatment of S2 may have resulted in better clinical outcomes. S1 was diagnosed with diabetes after presenting with serum glucose of 404 mg/dL (22.4 mmol/L) and started multiple daily insulin injections at age 4 months, followed by continuous subcutaneous insulin infusion (CSII) at age 42 months. S1 had positive genetic testing at age 4 months for the GlyB8Ser or Gly32Ser mutation in proinsulin. S2 had positive research-based genetic testing, age 1 month, before she had consistently elevated blood glucose levels. Continuous glucose monitoring revealed abnormal excursions to 200 mg/dL. Low-dose insulin therapy was initiated at age 2.5 months via CSII. At age-matched time points, S2 had higher C-peptide levels, lower hemoglobin A1c values, and lower estimated doses of insulin as compared with S1. Earlier, more intensive insulin treatment was associated with higher C-peptide levels, decreased insulin dosing, and improved glycemic control. Initiating exogenous insulin before overt hyperglycemia and maintaining intensive insulin management may reduce the demand for endogenous insulin production and may preserve β-cell function. Studies accumulating data on greater numbers of participants will be essential to determine whether these associations are consistent for all INS gene mutations.
منابع مشابه
Insulin Receptor Gene Mutations in Iranian Patients with Type II Diabetes Mellitus
Background: Patients with diabetes mellitus type II suffer from hyperglycemia because they are not able to use the insulin that they produce, often due to inadequate function of insulin receptors. There are some evidences that this deficiency is inherited in a dominant autosomal manner and leads to the malfunction of the pancreatic beta cells resulting in insulin excretion disorders. In this st...
متن کاملInsulin gene mutations and diabetes
Some mutations of the insulin gene cause hyperinsulinemia or hyperproinsulinemia. Replacement of biologically important amino acid leads to defective receptor binding, longer half-life and hyperinsulinemia. Three mutant insulins have been identified: (i) insulin Chicago (F49L or PheB25Leu); (ii) insulin Los Angeles (F48S or PheB24Ser); (iii) and insulin Wakayama (V92L or ValA3Leu). Replacement ...
متن کاملInsulin Therapy for Pre-Hyperglycemic Beta-Cell Endoplasmic Reticulum Crowding
Insulin therapy improves β-cell function in early stages of diabetes by mechanisms that may exceed alleviation of glucotoxicity. In advance type 2 diabetes, hyperglycemia causes β-cell damage and ultimately β-cell loss. At such an advanced stage, therapeutic modalities are often inadequate. Growing evidence indicates that in early stages of type-2 diabetes and some types of monogenic diabetes l...
متن کاملPhenotype, genotype of neonatal diabetes mellitus due to insulin gene mutation
Insulin (INS) gene mutations that cause permanent neonatal diabetes mellitus change single protein building blocks (amino acids) in the protein sequence. These mutations are believed to disrupt the cleavage of the proinsulin chain or the binding of the A and B chains to form insulin, leading to impaired blood sugar control. At least 10 mutations in the INS gene have been identified in people wi...
متن کاملSeven mutations in the human insulin gene linked to permanent neonatal/infancy-onset diabetes mellitus.
Permanent neonatal diabetes mellitus (PNDM) is a rare disorder usually presenting within 6 months of birth. Although several genes have been linked to this disorder, in almost half the cases documented in Italy, the genetic cause remains unknown. Because the Akita mouse bearing a mutation in the Ins2 gene exhibits PNDM associated with pancreatic beta cell apoptosis, we sequenced the human insul...
متن کامل