Fuzzy Neighborhood Operators based on Fuzzy Coverings

ثبت نشده
چکیده

Resumen In many data mining processes, neighborhood operators play an important role as they are generalizations of equivalence classes which were used in the original rough set model of Pawlak. In this article, we introduce the notion of fuzzy neighborhood system of an object based on a given fuzzy covering, as well as the notion of the fuzzy minimal and maximal descriptions of an object. Moreover, we extend the definition of four covering-based neighborhood operators as well as six derived coverings discussed by Yao and Yao to the fuzzy setting. We combine these fuzzy neighborhood operators and fuzzy coverings and prove that only sixteen different fuzzy neighborhood operators are obtained. Moreover, we study the partial order relations between those sixteen operators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Neighborhood Operators based on Fuzzy Coverings

Resum In many data mining processes, neighborhood operators play an important role as they are generalizations of equivalence classes which were used in the original rough set model of Pawlak. In this article, we introduce the notion of fuzzy neighborhood system of an object based on a given fuzzy covering, as well as the notion of the fuzzy minimal and maximal descriptions of an object. Moreov...

متن کامل

Fuzzy Neighborhood Operators based on Fuzzy Coverings

Resum In many data mining processes, neighborhood operators play an important role as they are generalizations of equivalence classes which were used in the original rough set model of Pawlak. In this article, we introduce the notion of fuzzy neighborhood system of an object based on a given fuzzy covering, as well as the notion of the fuzzy minimal and maximal descriptions of an object. Moreov...

متن کامل

Fuzzy Neighborhood Operators based on Fuzzy Coverings

Resum In many data mining processes, neighborhood operators play an important role as they are generalizations of equivalence classes which were used in the original rough set model of Pawlak. In this article, we introduce the notion of fuzzy neighborhood system of an object based on a given fuzzy covering, as well as the notion of the fuzzy minimal and maximal descriptions of an object. Moreov...

متن کامل

Fuzzy Neighborhood Operators based on Fuzzy Coverings

Resum In many data mining processes, neighborhood operators play an important role as they are generalizations of equivalence classes which were used in the original rough set model of Pawlak. In this article, we introduce the notion of fuzzy neighborhood system of an object based on a given fuzzy covering, as well as the notion of the fuzzy minimal and maximal descriptions of an object. Moreov...

متن کامل

Fuzzy Neighborhood Operators based on Fuzzy Coverings

Resum In many data mining processes, neighborhood operators play an important role as they are generalizations of equivalence classes which were used in the original rough set model of Pawlak. In this article, we introduce the notion of fuzzy neighborhood system of an object based on a given fuzzy covering, as well as the notion of the fuzzy minimal and maximal descriptions of an object. Moreov...

متن کامل

Fuzzy Neighborhood Operators based on Fuzzy Coverings

Resum In many data mining processes, neighborhood operators play an important role as they are generalizations of equivalence classes which were used in the original rough set model of Pawlak. In this article, we introduce the notion of fuzzy neighborhood system of an object based on a given fuzzy covering, as well as the notion of the fuzzy minimal and maximal descriptions of an object. Moreov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017