Quinone oxidoreductase message levels are differentially regulated in parasitic and non-parasitic plants exposed to allelopathic quinones.

نویسندگان

  • M Matvienko
  • A Wojtowicz
  • R Wrobel
  • D Jamison
  • Y Goldwasser
  • J I Yoder
چکیده

Allelopathic chemicals released by plants into the rhizosphere have effects on neighboring plants ranging from phytoxicity to inducing organogenesis. The allelopathic activity of naturally occurring quinones and phenols is primarily a function of reactive radicals generated during redox cycling between quinone and hydroquinone states. We isolated cDNAs encoding two distinct quinone oxidoreductases from roots of the parasitic plant Triphysaria treated with the allelopathic quinone 2,6-dimethoxybenzoquinone (DMBQ). TvQR1 is a member of the zeta-crystallin quinone oxidoreductase family that catalyzes one-electron quinone reductions, generating free radical semiquinones. TvQR2 belongs to a family of detoxifying quinone oxidoreductases that catalyze bivalent redox reactions which avoid the radical intermediate. TvQR1 and TvQR2 message levels are rapidly upregulated in Triphysaria roots as a primary response to treatment with various allelopathic quinones. Inhibition of quinone oxidoreductase enzymatic activity with dicumarol prior to quinone treatment resulted in increased transcript levels. While TvQR2 homologs were upregulated by DMBQ in roots of all plants examined, TvQR1 homologs were upregulated only in roots of parasitic plants. Phylogenetic trees constructed of TvQR1 and TvQR2 protein homologs in Archea, Eubacteria and Eukaryotes indicated that both gene families are ancient, yet the families have dissimilar evolutionary histories in angiosperms. We hypothesize that TvQR2-like proteins function to detoxify allelopathic quinones in the rhizosphere, while TvQR1 has specific functions associated with haustorium development in parasitic plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptional responses in the hemiparasitic plant Triphysaria versicolor to host plant signals.

Parasitic plants in the Scrophulariaceae use chemicals released by host plant roots to signal developmental processes critical for heterotrophy. Haustoria, parasitic plant structures that attach to and invade host roots, develop on roots of the hemiparasitic plant Triphysaria versicolor within a few hours of exposure to either maize (Zea mays) root exudate or purified haustoria-inducing factors...

متن کامل

Quinone oxidoreductase 2 is involved in haustorium development of the parasitic plant Phtheirospermum japonicum

The family Orobanchaceae includes many parasitic plant species. Parasitic plants invade host vascular tissues and form organs called haustoria, which are used to obtain water and nutrients. Haustorium formation is initiated by host-derived chemicals including quinones and flavonoids. Two types of quinone oxidoreductase (QR) are involved in signal transduction leading to haustorium formation; QR...

متن کامل

Heterologous expression and biochemical characterization of an NAD(P)H:quinone oxidoreductase from the hemiparasitic plant Triphysaria versicolor

Quinones are widespread secondary metabolites that function as signal molecules between organisms in the rhizosphere. Quinones are particularly important in the exchange of chemical signals between plant roots, a phenomenon classically termed allelopathy. The bioactivity of quinones is due in large part to radical intermediates formed during redox cycling between quinone and hydroquinone states...

متن کامل

A single-electron reducing quinone oxidoreductase is necessary to induce haustorium development in the root parasitic plant Triphysaria.

Parasitic plants in the Orobanchaceae develop haustoria in response to contact with host roots or chemical haustoria-inducing factors. Experiments in this manuscript test the hypothesis that quinolic-inducing factors activate haustorium development via a signal mechanism initiated by redox cycling between quinone and hydroquinone states. Two cDNAs were previously isolated from roots of the para...

متن کامل

Evaluation of the risk of lung cancer associated with NAD(P)H: quinone oxidoreductase 1 (NQO1) C609T polymorphism in male current cigarette smokers from the Eastern India

NAD(P)H: quinone oxidoreductase 1 (NQO1) is an endogenous cellular defence mechanism against several carcinogenic quinones derived from cigarette smoke. NQO1 C609T polymorphism is a strong determinant of NQO1 structure and function. The people with mutant allele for this polymorphism has significantly reduced NQO1 activity. In this study, we tried to evaluate the risk of lung cancer as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant journal : for cell and molecular biology

دوره 25 4  شماره 

صفحات  -

تاریخ انتشار 2001