DNA origami as biocompatible surface to match single-molecule and ensemble experiments

نویسندگان

  • Andreas Gietl
  • Phil Holzmeister
  • Dina Grohmann
  • Philip Tinnefeld
چکیده

Single-molecule experiments on immobilized molecules allow unique insights into the dynamics of molecular machines and enzymes as well as their interactions. The immobilization, however, can invoke perturbation to the activity of biomolecules causing incongruities between single molecule and ensemble measurements. Here we introduce the recently developed DNA origami as a platform to transfer ensemble assays to the immobilized single molecule level without changing the nano-environment of the biomolecules. The idea is a stepwise transfer of common functional assays first to the surface of a DNA origami, which can be checked at the ensemble level, and then to the microscope glass slide for single-molecule inquiry using the DNA origami as a transfer platform. We studied the structural flexibility of a DNA Holliday junction and the TATA-binding protein (TBP)-induced bending of DNA both on freely diffusing molecules and attached to the origami structure by fluorescence resonance energy transfer. This resulted in highly congruent data sets demonstrating that the DNA origami does not influence the functionality of the biomolecule. Single-molecule data collected from surface-immobilized biomolecule-loaded DNA origami are in very good agreement with data from solution measurements supporting the fact that the DNA origami can be used as biocompatible surface in many fluorescence-based measurements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monitoring patterned enzymatic polymerization on DNA origami at single-molecule level.

DNA origami has been used to orchestrate reactions with nano-precision using a variety of biomolecules. Here, the dynamics of albumin-assisted, localized single-molecule DNA polymerization by terminal deoxynucleotidyl transferase on a 2D DNA origami are monitored using AFM in liquid. Direct visualization of the surface activity revealed the mechanics of growth.

متن کامل

Electron Microscopic Visualization of Protein Assemblies on Flattened DNA Origami.

DNA provides an ideal substrate for the engineering of versatile nanostructures due to its reliable Watson-Crick base pairing and well-characterized conformation. One of the most promising applications of DNA nanostructures arises from the site-directed spatial arrangement with nanometer precision of guest components such as proteins, metal nanoparticles, and small molecules. Two-dimensional DN...

متن کامل

Application of ensemble learning techniques to model the atmospheric concentration of SO2

In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...

متن کامل

Nanomechanical DNA origami 'single-molecule beacons' directly imaged by atomic force microscopy

DNA origami involves the folding of long single-stranded DNA into designed structures with the aid of short staple strands; such structures may enable the development of useful nanomechanical DNA devices. Here we develop versatile sensing systems for a variety of chemical and biological targets at molecular resolution. We have designed functional nanomechanical DNA origami devices that can be u...

متن کامل

DNA origami technology for biomaterials applications

REVIEW ARTICLE Masayuki Endo, Hiroshi Sugiyama et al. DNA origami technology for biomaterials applications Biomaterials Science REVIEW DNA origami is an emerging technology for designing and constructing defined multidimensional nanostructures. This technology is now expanding to materials science. This article introduces the basics of DNA origami, the design of various two-dimensional and thre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2012