Brain Regions Involved in Arousal and Reward Processing are Associated with Apathy in Alzheimer's Disease and Frontotemporal Dementia.
نویسندگان
چکیده
BACKGROUND Apathy is a common and problematic symptom of several neurodegenerative illnesses, but its neuroanatomical bases are not understood. OBJECTIVE To determine the regions associated with apathy in subjects with mild Alzheimer's disease (AD) using a method that accounts for the significant co-linearity of regional atrophy and neuropsychiatric symptoms. METHODS We identified 57 subjects with mild AD (CDR = 1) and neuropsychiatric symptoms in the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We performed a multivariate multiple regression with LASSO regularization on all symptom subscales of the Neuropsychiatric Inventory and the whole-brain ROI volumes calculated from their baseline MRIs with FreeSurfer. We compared our results to those from a previous study using the same method in patients with frontotemporal dementia (FTD) and corticobasal syndrome (CBS). RESULTS Of neuropsychiatric symptoms, apathy showed the most robust neuroanatomical associations in the AD subjects. Atrophy of the following regions were independently associated with apathy: the ventromedial prefrontal cortex; ventrolateral prefrontal cortex; posterior cingulate cortex and adjacent lateral cortex; and the bank of the superior temporal sulcus. These results replicate previous studies using FTD and CBS patients, mostly agree with the previous literature on apathy in AD, and correspond to the Medial and Orbital Prefrontal Cortex networks identified in non-human primates. CONCLUSION The current study, previous studies from our laboratory, and the previous literature suggest that impairment of the same brain networks involved in arousal, threat response, and reward processing are associated with apathy in AD and FTD.
منابع مشابه
Anatomical correlates of reward-seeking behaviours in behavioural variant frontotemporal dementia.
Behavioural variant frontotemporal dementia is characterized by abnormal responses to primary reward stimuli such as food, sex and intoxicants, suggesting abnormal functioning of brain circuitry mediating reward processing. The goal of this analysis was to determine whether abnormalities in reward-seeking behaviour in behavioural variant frontotemporal dementia are correlated with atrophy in re...
متن کاملWhite Matter Changes Associated with Resting Sympathetic Tone in Frontotemporal Dementia vs. Alzheimer’s Disease
BACKGROUND Resting sympathetic tone, a measure of physiological arousal, is decreased in patients with apathy and inertia, such as those with behavioral variant frontotemporal dementia (bvFTD) and other frontally-predominant disorders. OBJECTIVE To identify the neuroanatomical correlates of skin conductance levels (SCLs), an index of resting sympathetic tone and apathy, among patients with bv...
متن کاملThe role of genetics in alzheimer’s disease
Alzheimer's disease is a progressive neurological disorder that causes the brain to shrink (atrophy) and brain cells die. Alzheimer's disease is the most common cause of dementia and causes a decrease in thinking skills and social behaviors. Alzheimer's disease is more common in people over 65 years old. The risk of developing Alzheimer's disease and other types of dementia increases with age,...
متن کاملThe emotive brain, the noradrenergic system, and cognition
Motivation and attention can have a profound influence on perception, learning and memory. Neuromodulatory systems, especially the noradrenergic (NE) system, co-vary with psychological states to modulate cortical arousal, influence sensory processing and promote synaptic plasticity. There is even some suggestion that the NE system might facilitate functional recovery after brain damage. Post-sy...
متن کاملThe emotive brain, the noradrenergic system, and cognition
Motivation and attention can have a profound influence on perception, learning and memory. Neuromodulatory systems, especially the noradrenergic (NE) system, co-vary with psychological states to modulate cortical arousal, influence sensory processing and promote synaptic plasticity. There is even some suggestion that the NE system might facilitate functional recovery after brain damage. Post-sy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Alzheimer's disease : JAD
دوره 55 2 شماره
صفحات -
تاریخ انتشار 2017