Best Simultaneous Approximation on Small Regions by Rational Functions
نویسندگان
چکیده
We study the behavior of best simultaneous (lq , Lp)-approximation by rational functions on an interval, when the measure tends to zero. In addition, we consider the case of polynomial approximation on a finite union of intervals. We also get an interpolation result.
منابع مشابه
A method to obtain the best uniform polynomial approximation for the family of rational function
In this article, by using Chebyshev’s polynomials and Chebyshev’s expansion, we obtain the best uniform polynomial approximation out of P2n to a class of rational functions of the form (ax2+c)-1 on any non symmetric interval [d,e]. Using the obtained approximation, we provide the best uniform polynomial approximation to a class of rational functions of the form (ax2+bx+c)-1 for both cases b2-4a...
متن کاملFuzzy Best Simultaneous Approximation of a Finite Numbers of Functions
Fuzzy best simultaneous approximation of a finite number of functions is considered. For this purpose, a fuzzy norm on $Cleft (X, Y right )$ and its fuzzy dual space and also the set of subgradients of a fuzzy norm are introduced. Necessary case of a proved theorem about characterization of simultaneous approximation will be extended to the fuzzy case.
متن کاملThe best uniform polynomial approximation of two classes of rational functions
In this paper we obtain the explicit form of the best uniform polynomial approximations out of Pn of two classes of rational functions using properties of Chebyshev polynomials. In this way we present some new theorems and lemmas. Some examples will be given to support the results.
متن کاملExplicit Nearly Optimal Linear Rational Approximation with Preassigned Poles
This paper gives explicit rational functions for interpolating and approximating functions on the intervals [-1,1], [0, oo], and [-oo, oo]. The rational functions are linear in the functions to be approximated, and they have preassigned poles. The error of approximation of these rationals is nearly as small as the error of best rational approximation with numerator and denominator polynomials o...
متن کاملA rational Chebyshev functions approach for Fredholm-Volterra integro-differential equations
The purpose of this study is to present an approximate numerical method for solving high order linear Fredholm-Volterra integro-differential equations in terms of rational Chebyshev functions under the mixed conditions. The method is based on the approximation by the truncated rational Chebyshev series. Finally, the effectiveness of the method is illustrated in several numerical examples. The p...
متن کامل