Human Group Optimizer with Local Search

نویسندگان

  • Chaohua Dai
  • Weirong Chen
  • Lili Ran
  • Yi Zhang
  • Yu Du
چکیده

Human Group Optimization (HGO) algorithm, derived from the previously proposed seeker optimization algorithm (SOA), is a novel swarm intelligence algorithm by simulating human behaviors, especially human searching/foraging behaviors. In this paper, a canonical HGO with local search (L-HGO) is proposed. Based on the benchmark functions provided by CEC2005, the proposed algorithm is compared with several versions of differential evolution (DE) algorithms, particle swarm optimization (PSO) algorithms and covariance matrix adaptation evolution strategy (CMA-ES). The simulation results show that the proposed HGO is competitive or, even, superior to the considered other algorithms for some employed functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INVESTIGATION OF SEISMIC PERFORMANCE OF STEEL FRAMES BASED ON A QUICK GROUP SEARCH OPTIMIZER

A quick group search optimizer (QGSO) is an intelligent optimization algorithm which has been applied in structural optimal design, including the hinged spatial structural system. The accuracy and convergence rate of QGSO are feasible to deal with a spatial structural system. In this paper, the QGSO algorithm optimization is adopted in seismic research of steel frames with semi-rigid connection...

متن کامل

AN IMPROVED INTELLIGENT ALGORITHM BASED ON THE GROUP SEARCH ALGORITHM AND THE ARTIFICIAL FISH SWARM ALGORITHM

This article introduces two swarm intelligent algorithms, a group search optimizer (GSO) and an artificial fish swarm algorithm (AFSA). A single intelligent algorithm always has both merits in its specific formulation and deficiencies due to its inherent limitations. Therefore, we propose a mixture of these algorithms to create a new hybrid optimization algorithm known as the group search-artif...

متن کامل

DYNAMIC PERFORMANCE OPTIMIZATION OF TRUSS STRUCTURES BASED ON AN IMPROVED MULTI-OBJECTIVE GROUP SEARCH OPTIMIZER

This paper presents an improved multi-objective group search optimizer (IMGSO) that is based on Pareto theory that is designed to handle multi-objective optimization problems. The optimizer includes improvements in three areas: the transition-feasible region is used to address constraints, the Dealer’s Principle is used to construct the non-dominated set, and the producer is updated using a tab...

متن کامل

Group Search Optimizer with Interactive Dynamic Neighborhood

Group search optimizer(GSO) is a new novel optimization algorithm by simulating animal behaviour. It uses the Gbest topology structure, which leads to rapid exchange of information among particles. So,it is easily trapped into a local optima when dealing with multi-modal optimization problems. In this paper,inspiration from the Newman and Watts model,a improved group search optimizer with inter...

متن کامل

Group Search Optimizer for the Mobile Location Management Problem

We propose a diversity-guided group search optimizer-based approach for solving the location management problem in mobile computing. The location management problem, which is to find the optimal network configurations of management under the mobile computing environment, is considered here as an optimization problem. The proposed diversity-guided group search optimizer algorithm is realized wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011