A novel kinematic design, analysis and simulation tool for general Stewart platforms
نویسندگان
چکیده
In this paper, a general Stewart Platform Simulation tool (STEWSIM) is developed for robot designers and researchers. The STEWSIM uses an efficient connection matrix algorithm that has been developed for kinematic design of all possible types of general Stewart platforms (GSPs), such as 3× 3, 3× 4, 3× 5 . 6× 5 and 6× 6 with an arbitrary number of legs varying between three and six. This new interactive simulation software based on the MATLAB Graphical User Interface (GUI) provides a suite of analyses, such as inverse and forward kinematics, Jacobian matrix, dexterity, workspace, singularity analysis and trajectory planning, using different kinds of roll-pitch-yaw or Euler angle sets. The STEWSIM also provides the visualization of the GSPs, graphical representation of the workspace, and graphic animation of trajectories specified by inverse kinematics in three-dimensional space. Furthermore, it provides an environment to compare the kinematic performances of the designed GSPs with arbitrary configuration. As a kinematic design, analysis and simulation software, the STEWSIM provides researchers with the ability to change the parameters interactively for designing their manipulators with optimum specifications, such as leg lengths and attachment points. The usage of this simulation tool may result in new types of feasible robotic manipulators that can be used for practical applications in industry.
منابع مشابه
New Geometric Approaches to the Analysis and Design of Stewart-Gough Platforms
In general, rearranging the legs of a Stewart-Gough platform, i.e., changing the locations of its leg attachments, modifies the platform singularity locus in a rather unexpected way. Nevertheless, some leg rearrangements have been recently found to leave singularities invariant. Identification of such rearrangements is useful not only for the kinematic analysis of the platforms, but also as a t...
متن کاملThe Kinematic Analysis Of Four Degrees Of Freedom For A Medical Robot And Control It By Labview And Arduino Mega2560 (Simulation And Implementation)
ABSRACTThis study presents the kinematic analysis of a four-degree freedom medical robotic arm using the Matlab and the robotic-tool, the arm was designed using a solid work program, As well as details of the control of the real design of this arm using Arduino Mega 2560, The specialist enters the position to be reached by the automatic arm (injection position), Or moving the arm to any p...
متن کاملAnalysis and Implementation of a 6 Dof Stewart Platform-based Robotic Wrist
A~trae t In this paper, we present the kinematic analysis and implementation of a 6 DOF robotic wrist which is mounted to a general open-kinematic chain manipulator to serve as a testbed for studying precision robotic assembly in space. The wrist design is based on the Stewart-Platform mechanism and consists mainly of two platforms and six linear actuators driven by d.c. motors. Position feedba...
متن کاملNew Direct Kinematic Formulation of 6 D.O.F Stewart-Gough Platforms Using the Tetrahedron Approach
The paper presents a single constraint equation of the direct kinematic solution of 6-dof (Stewart-Gough) platforms. Many research works have presented a single polynomial of the direct kinematics for several 6-dof platforms. However, the formulation of the polynomial has potential problems such as complicated formulation procedures and discrimination of the actual solution from all roots. This...
متن کاملKinematic analysis and design of a six DOF 3-PRPS in-parallel manipulator
This paper presents a kinematic analysis and design characteristics of an in-parallel manipulator developed for the probing task application that requires high precision, active compliance, and high control bandwidth. The developed manipulator is a class of six-degree-of-freedom in-parallel platforms with 3 PRPS (prismatic-revolute-prismatic-spherical joints) chain geometry. The main advantages...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Simulation
دوره 89 شماره
صفحات -
تاریخ انتشار 2013