A construction of almost Steiner systems
نویسندگان
چکیده
Let n, k, and t be integers satisfying n > k > t ≥ 2. A Steiner system with parameters t, k, and n is a k-uniform hypergraph on n vertices in which every set of t distinct vertices is contained in exactly one edge. An outstanding problem in Design Theory is to determine whether a nontrivial Steiner system exists for t ≥ 6. In this note we prove that for every k > t ≥ 2 and sufficiently large n, there exists an almost Steiner system with parameters t, k, and n; that is, there exists a k-uniform hypergraph on n vertices such that every set of t distinct vertices is covered by either one or two edges.
منابع مشابه
Perfect countably infinite Steiner triple systems
We use a free construction to prove the existence of perfect Steiner triple systems on a countably infinite point set. We use a specific countably infinite family of partial Steiner triple systems to start the construction, thus yielding 2א0 non-isomorphic perfect systems.
متن کاملAlmost all Steiner triple systems have perfect matchings
We show that for any n divisible by 3, almost all order-n Steiner triple systems have a perfect matching (also known as a parallel class or resolution class). In fact, we prove a general upper bound on the number of perfect matchings in a Steiner triple system and show that almost all Steiner triple systems essentially attain this maximum. We accomplish this via a general theorem comparing a un...
متن کاملOn the switching construction of Steiner quadruple systems
The structure of Steiner quadruple system S(v, 4, 3) of full 2-rank v− 1 is considered. It is shown that there are two types (induced and singular) of such systems. It is shown that induced Steiner systems can be obtained from Steiner systems S(v, 4, 3) of 2-rank v − 2 by switching construction which is introduced here. Moreover, all non-isomorphic induced Steiner systems S(16, 4, 3) of full 2r...
متن کاملOn 6-sparse Steiner triple systems
We give the first known examples of 6-sparse Steiner triple systems by constructing 29 such systems in the residue class 7 modulo 12, with orders ranging from 139 to 4447. We then present a recursive construction which establishes the existence of 6-sparse systems for an infinite set of orders. Observations are also made concerning existing construction methods for perfect Steiner triple system...
متن کاملConstruction Techniques for Anti-Pasch Steiner Triple Systems
Four methods for constructing anti-Pasch Steiner triple systems are developed. The first generalises a construction of Stinson and Wei to obtain a general singular direct product construction. The second generalises the Bose construction. The third employs a construction due to Lu. The fourth employs Wilson-type inflation techniques using Latin squares having no subsquares of order two. As a co...
متن کامل