TR-2008003: Unified Nearly Optimal Algorithms for Structured Integer Matrices and Polynomials
نویسندگان
چکیده
We seek the solution of banded, Toeplitz, Hankel, Vandermonde, Cauchy and other structured linear systems of equations with integer coefficients. By combining Hensel’s symbolic lifting with either divide-and-conquer algorithms or numerical iterative refinement, we unify the solution for all these structures. We yield the solution in nearly optimal randomized Boolean time, which covers both solution and its correctness verification. Our algorithms and nearly optimal time bounds are extended to the computation of the determinant of a structured integer matrix, its rank and a basis for its null space as well as to some fundamental computations with univariate polynomials that have integer coefficients. Furthermore, we allow to perform lifting modulo a properly bounded power of two to implement our algorithms in binary within a fixed computer precision. 2000 Math. Subject Classification: 68W30, 68W20, 65F05, 68Q25
منابع مشابه
Unified Nearly Optimal Algorithms for Structured Integer Matrices and Polynomials
We seek the solution of banded, Toeplitz, Hankel, Vandermonde, Cauchy and other structured linear systems of equations with integer coefficients. By combining Hensel’s symbolic lifting with either divide-and-conquer algorithms or numerical iterative refinement, we unify the solution for all these structures. We yield the solution in nearly optimal randomized Boolean time, which covers both solu...
متن کاملTR-2008007: Degeneration of Structured Integer Matrices Modulo an Integer
Hensel’s lifting modulo a prime q is a customary means of the solution of an integer or rational linear system of equations. In combination with some effective numerical algorithms this technique enables solution in nearly optimal time in the case of most popular structured inputs. Practically one can further benefit from choosing q = 2 for a proper positive integer v and performing binary comp...
متن کاملTR-2013006: Polynomial Evaluation and Interpolation and Transformations of Matrix Structures
Multipoint polynomial evaluation and interpolation are fundamental for modern numerical and symbolic computing. The known algorithms solve both problems over any field of constants in nearly linear arithmetic time, but the cost grows to quadratic for numerical solution. We decrease this cost dramatically and for a large class of inputs yield nearly linear time as well. We first restate our task...
متن کاملA Trace Bound for Positive Definite Connected Integer Symmetric Matrices
Let A be a connected integer symmetric matrix, i.e., A = (aij) ∈ Mn(Z) for some n, A = AT , and the underlying graph (vertices corresponding to rows, with vertex i joined to vertex j if aij 6= 0) is connected. We show that if all the eigenvalues of A are strictly positive, then tr(A) ≥ 2n− 1. There are two striking corollaries. First, the analogue of the Schur-SiegelSmyth trace problem is solve...
متن کاملTR-2003004: Superfast Algorithms for Singular Toeplitz/Hankel-like Matrices
Applying the superfast divide-and-conquer MBA algorithm for generally singular n × n Toeplitz-like or Hankel-like integer input matrices, we perform computations in the ring of integers modulo a power of a fixed prime, especially power of 2. This is practically faster than computing modulo a random prime but requires additional care to avoid degeneration, particularly at the stages of compressi...
متن کامل