Water-soluble multidentate polymers compactly coating Ag2S quantum dots with minimized hydrodynamic size and bright emission tunable from red to second near-infrared region.

نویسندگان

  • Rijun Gui
  • Ajun Wan
  • Xifeng Liu
  • Wen Yuan
  • Hui Jin
چکیده

Hydrodynamic size-minimized quantum dots (QDs) have outstanding physicochemical properties for applications in multicolor molecular and cellular imaging at the level of single molecules and nanoparticles. In this study, we have reported the aqueous synthesis of Ag2S QDs by using thiol-based multidentate polymers as capping reagents. By regulating the composition of the precursors (AgNO3 and sulfur-N2H4·H2O complex) and multidentate polymers (poly(acrylic acid)-graft-cysteamine-graft-ethylenediamine), as well as the reaction time, Ag2S QDs (2.6-3.7 nm) are prepared, displaying tunable photoluminescence (PL) emission from red to the second near-infrared region (687-1096 nm). The small hydrodynamic thickness (1.6-1.9 nm) of the multidentate polymers yields a highly compact coating for the QDs, which results in the bright fluorescent QDs with high PL quantum yields (QYs: 14.2-16.4%). Experimental results confirm that the QDs have high PL stability and ultralow cytotoxicity, as well as high PLQYs and small hydrodynamic sizes (4.5-5.6 nm) similar to fluorescent proteins (27-30 kDa), indicating the feasibility of highly effective PL imaging in cells and living animals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Emission tunable, cyto/hemocompatible, near-IR-emitting Ag2S quantum dots by aqueous decomposition of DMSA.

Size tunable aqueous Ag2S quantum dots emitting in the near-infrared region were synthesized through decomposition of meso-2,3-dimercaptosuccinic acid (DMSA) in water. The resulting NIR QDs are highly cyto- and hemocompatible, have quantum yields as high as 6.5% and are effective optical imaging agents based on in vitro evaluation.

متن کامل

Water-soluble Ag(2)S quantum dots for near-infrared fluorescence imaging in vivo.

A one-step method for synthesizing water-soluble Ag(2)S quantum dots terminated with carboxylic acid group has been reported. The crystal structure and surface of the prepared Ag(2)S quantum dots were characterized. The prepared Ag(2)S quantum dots exhibited bright photoluminescence and excellent photostabilities. The photoluminescence emissions could be tuned from visible region to near-infrar...

متن کامل

Compact quantum dots for single-molecule imaging.

Single-molecule imaging is an important tool for understanding the mechanisms of biomolecular function and for visualizing the spatial and temporal heterogeneity of molecular behaviors that underlie cellular biology (1-4). To image an individual molecule of interest, it is typically conjugated to a fluorescent tag (dye, protein, bead, or quantum dot) and observed with epifluorescence or total i...

متن کامل

Tunable Ultrasmall Visible-to-Extended Near-Infrared Emitting Silver Sulfide Quantum Dots for Integrin-Targeted Cancer Imaging

The large size of many near-infrared (NIR) fluorescent nanoparticles prevents rapid extravasation from blood vessels and subsequent diffusion to tumors. This confines in vivo uptake to the peritumoral space and results in high liver retention. In this study, we developed a viscosity modulated approach to synthesize ultrasmall silver sulfide quantum dots (QDs) with distinct tunable light emissio...

متن کامل

Nonlinear optical properties of near-infrared region Ag2S quantum dots pumped by nanosecond laser pulses

This study investigates near-infrared region Ag2S quantum dots (QDs) and their nonlinear optical response under 532 nm nanosecond laser pulses. Our experimental result shows that nonlinear transmission is reduced from 0.084 to 0.04. The observed narrowing behavior of the output pulse width shows superior optical limiting. We discuss the physical mechanisms responsible for the nonlinear optical ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 6 10  شماره 

صفحات  -

تاریخ انتشار 2014