Growth of dandelion-shaped CuInSe2 nanostructures by a two-step solvothermal process.
نویسندگان
چکیده
CuInSe(2) (CIS) nanodandelion structures were synthesized by a two-step solvothermal approach. First, InSe nanodandelions were prepared by reacting In(acac)(3) with trioctylphosphine-selenide (TOP-Se) in 1-octadecene (ODE) at 170 °C in the presence of oleic acid. These InSe dandelions were composed of polycrystalline nanosheets with thickness < 10 nm. The size of the InSe dandelions could be tuned within the range of 300 nm-2 µm by adjusting the amount of oleic acid added during the synthesis. The InSe dandelion structures were then reacted with Cu(acac)(2) in the second-step solvothermal process in ODE to form CIS nanodandelions. The band gap of the CIS dandelions was determined from ultraviolet (UV) absorption measurements to be ∼ 1.36 eV, and this value did not show any obvious change upon varying the size of the CIS dandelions. Brunauer-Emmett-Teller (BET) measurements showed that the specific surface area of these CIS dandelion structures was 44.80 m(2) g(-1), which was more than five times higher than that of the CIS quantum dots (e.g. 8.22 m(2) g(-1)) prepared by using reported protocols. A fast photoresponsive behavior was demonstrated in a photoswitching device using the 200 nm CIS dandelions as the active materials, which suggested their possible application in optoelectronic devices.
منابع مشابه
A Facile Solvothermal Method for Synthesis of CuInS2 Nanostructures
CuInS2 nanostructures were synthesized via a simple surfactant-free solvothermal route. In this synthesis, thiosemicarbazide and thioglycolic acid were used as sulfur sources. The effects of different parameters such as type of precursor and time on the morphology and particle size of the samples have been investigated. The nanostructures were characterized by means ...
متن کاملPreparation of Nitrogen-Doped Graphene By Solvothermal Process as Supporting Material for Fuel Cell Catalysts
Development of efficient electrocatalysts for oxygen reduction reaction (ORR) is one of the most important issues for optimizing the performance of fuel cells and metal-air batteries. The introduction of nitrogen into carbon nanostructures has created new pathways for the development of non-precious electrocatalysts in fuel cells. In this work, nitrogen-doped graphene (NG) was synthesized by a ...
متن کاملEffects of acid on the microstructures and properties of three-dimensional TiO2 hierarchical structures by solvothermal method
Three-dimensional (3D) TiO2 hierarchical structures with various microstructures have been successfully synthesized via a surfactant-free and single-step solvothermal route, in which hydrochloric acid (HCl), nitric acid (HNO3), and acetic acid (HAc) are employed as the acid medium, respectively. The effects of acid medium on the microstructures and properties of 3D TiO2 hierarchical structure h...
متن کاملNovel Solvothermal Route for the Synthesis of Pure Ultrafine Anatase Nanoparticles
Titanium oxide nanoparticles were synthesized via a solvothermal treatment of titanium isopropoxide in the presence of L-lysine (lysine). The prepared nanostructures characterized by atomic force microscopy (AFM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), diffraction scanning calorimetry (DSC), scanning electronic microscopy (SEM), transmission electron microscopy (TEM) and...
متن کاملTwo-curve-shaped biosensor using photonic crystal nano-ring resonators
We design a novel nano-ring resonator using two-dimensional photonic crystal (2D-PhC), for bio-sensing applications. The structure of biosensor is created by two-curve-shaped ring resonator which sandwiched by two waveguides. These are configured by removing one row of air holes. The refractive index of sensing hole is changed by binding an analyte. Hence, intensity of the transmission spectrum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanotechnology
دوره 22 19 شماره
صفحات -
تاریخ انتشار 2011