Polynomial recognition of cluster algebras of finite type
نویسندگان
چکیده
Cluster algebras are a recent topic of study and have been shown to be a useful tool to characterize structures in several knowledge fields. An important problem is to establish whether or not a given cluster algebra is of finite type. Using the standard definition, the problem is infeasible since it uses mutations that can lead to an infinite process. Barot, Geiss and Zelevinsky (2006) presented an easier way to verify if a given algebra is of finite type, by testing that all chordless cycles of the graph related to the algebra are cyclically oriented and that there exists a positive quasi-Cartan companion of the skew-symmetrizable matrix related to the algebra. We develop an algorithm that verifies these conditions and decides whether or not a cluster algebra is of finite type in polynomial time. The second part of the algorithm is used to prove that the more general problem to decide if a matrix has a positive quasi-Cartan companion is in NP.
منابع مشابه
ALGEBRAS WITH CYCLE-FINITE STRONGLY SIMPLY CONNECTED GALOIS COVERINGS
Let $A$ be a nite dimensional $k-$algebra and $R$ be a locally bounded category such that $R rightarrow R/G = A$ is a Galois covering dened by the action of a torsion-free group of automorphisms of $R$. Following [30], we provide criteria on the convex subcategories of a strongly simply connected category R in order to be a cycle- nite category and describe the module category of $A$. We p...
متن کاملThe Broken Ptolemy Algebra: a Finite-type Laurent Phenomenon Algebra
Type A, or Ptolemy cluster algebras are a prototypical example of finite type cluster algebras, as introduced by Fomin and Zelevinsky. Their combinatorics is that of triangulations of a polygon. Lam and Pylyavskyy have introduced a generalization of cluster algebras where the exchange polynomials are not necessarily binomial, called Laurent phenomenon algebras. It is an interesting and hard que...
متن کاملA Graph Theoretic Expansion Formula for Cluster Algebras of Classical Type
In this paper we give a graph theoretic combinatorial interpretation for the cluster variables that arise in most cluster algebras of finite type with bipartite seed. In particular, we provide a family of graphs such that a weighted enumeration of their perfect matchings encodes the numerator of the associated Laurent polynomial while decompositions of the graphs correspond to the denominator. ...
متن کاملSkew-symmetric Cluster Algebras of Finite Mutation Type
In the famous paper [8] Fomin and Zelevinsky obtained Cartan-Killing type classification of all cluster algebras of finite type, i.e. cluster algebras having only finitely many distinct cluster variables. A wider class of cluster algebras is formed by cluster algebras of finite mutation type which have finitely many exchange matrices (but are allowed to have infinitely many cluster variables). ...
متن کامل1 2 Fe b 20 06 CLUSTER ALGEBRAS IV : COEFFICIENTS
We study the dependence of a cluster algebra on the choice of coefficients. We write general formulas expressing the cluster variables in any cluster algebra in terms of the initial data; these formulas involve a family of polynomials associated with a particular choice of “principal” coefficients. We show that the exchange graph of a cluster algebra with principal coefficients covers the excha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1507.03844 شماره
صفحات -
تاریخ انتشار 2015