Asymptotic Equivalence for Nonparametric Regression

نویسنده

  • ION GRAMA
چکیده

We consider a nonparametric model E, generated by independent observations Xi, i = 1, ..., n, with densities p(x, θi), i = 1, ..., n, the parameters of which θi = f(i/n) ∈ Θ are driven by the values of an unknown function f : [0, 1]→ Θ in a smoothness class. The main result of the paper is that, under regularity assumptions, this model can be approximated, in the sense of the Le Cam deficiency pseudodistance, by a nonparametric Gaussian shift model Yi = Γ(f(i/n)) + εi, where ε1, ..., εn are i.i.d. standard normal r.v.’s, the function Γ(θ) : Θ → R satisfies Γ′(θ) = √ I(θ) and I(θ) is the Fisher information corresponding to the density p(x, θ).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Equivalence Theory for Nonparametric Regression With Random Design

This paper establishes the global asymptotic equivalence between the nonparametric regression with random design and the white noise under sharp smoothness conditions on an unknown regression or drift function. The asymptotic equivalence is established by constructing explicit equivalence mappings between the nonparametric regression and the white-noise experiments, which provide synthetic obse...

متن کامل

Asymptotic Equivalence Theory for Nonparametric Regression with Random Design by Lawrence

This paper establishes the global asymptotic equivalence between the nonparametric regression with random design and the white noise under sharp smoothness conditions on an unknown regression or drift function. The asymptotic equivalence is established by constructing explicit equivalence mappings between the nonparametric regression and the whitenoise experiments, which provide synthetic obser...

متن کامل

Asymptotic Equivalence and Adaptive Estimation for Robust Nonparametric Regression

Asymptotic equivalence theory developed in the literature so far are only for bounded loss functions. This limits the potential applications of the theory because many commonly used loss functions in statistical inference are unbounded. In this paper we develop asymptotic equivalence results for robust nonparametric regression with unbounded loss functions. The results imply that all the Gaussi...

متن کامل

ASYMPTOTIC NONEQUIVALENCE OF NONPARAMETRIC EXPERIMENTS WHEN THE SMOOTHNESS INDEX IS 1/2 By

An example is provided to show that the natural asymptotic equivalence does not hold between any pairs of three nonparametric experiments: density problem, white noise with drift and nonparametric regression, when the smoothness index of the unknown nonparametric function class is 1/2. 1. Introduction. There have recently been several papers demonstrating the global asymptotic equivalence of ce...

متن کامل

Asymptotic equivalence for nonparametric regression with multivariate and random design

We show that nonparametric regression is asymptotically equivalent in Le Cam’s sense with a sequence of Gaussian white noise experiments as the number of observations tends to infinity. We propose a general constructive framework based on approximation spaces, which permits to achieve asymptotic equivalence even in the cases of multivariate and random design.

متن کامل

Asymptotic Equivalence of Nonparametric Autoregression and Nonparametric Regression

where (εi)i=1,...,n are i.i.d. random variables. The unknown autoregression function f is then the target of statistical inference and the development of efficient estimators is a natural task for theoretically oriented statisticians. On the one hand, it has been recognized for a long time that commonly used estimators in model (1) have the same asymptotic behavior as corresponding estimators i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002