Solutions to Problems 3.5, 3.9.5, 3.11, 3.13.5
نویسنده
چکیده
Next, we claim that x ∈ Qp is a square if and only if x = py for n ∈ Z, and y ∈ Zp a padic unit. One direction is obvious. The second direction is also fairly obvious–just refer to the previous case, and also note that p is itself NOT a square in Qp (since if it had a square root, then that square root would have valuation 12 ). We can conclude then that [ Qp : Q×2 p ] = 4, and is given by {1, p, u, pu} for u a quadratic non-residue in Zp . Referring to the text below this Exercise in the course notes, we can moreover conclude that Qp /(Q×2 p ) ∼= Z/2Z× Z/2Z 3.9.5 A very special and important quadratic form is qH(x1, x2) = x1x2, the so-called hyperbolic plane. a) Let K be any field of characteristic different from 2. Give an explicit change of variables that diagonalizes qH. Solutions: Short answer: let
منابع مشابه
PRIMES 2015 reading project: problems and solutions
3. On binomial coefficients 13 3.1. Definitions and basic properties . . . . . . . . . . . . . . . . . . . . . 14 3.2. Binomial coefficients and polynomials . . . . . . . . . . . . . . . . . . 21 3.3. The Chu-Vandermonde identity . . . . . . . . . . . . . . . . . . . . . 24 3.4. Further results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.5. Additional exercises . . . . ...
متن کاملIntroduction to Abstract Algebra ( Math 113 )
3 Groups 12 3.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 Subgroups, Cosets and Lagrange’s Theorem . . . . . . . . . . . . . . . . . . 14 3.3 Finitely Generated Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4 Permutation Groups and Group Actions . . . . . . . . . . . . . . . . . . . . 19 3.5 The Oribit-Stabiliser Theorem . ....
متن کاملCompetitive Programming Notebook
3 Dynamic Programming 3 3.1 Longest Common Subsequence (LCS) . . . . . 3 3.2 Longest Increasing Subsequence (LIS) . . . . . 3 3.2.1 O(n) version . . . . . . . . . . . . . . . 3 3.2.2 O(n log n) version . . . . . . . . . . . . 3 3.3 MCM (Matrix Chain Multiplication) . . . . . . 4 3.4 Knapsack . . . . . . . . . . . . . . . . . . . . . 4 3.5 Counting Change . . . . . . . . . . . . . . . . . 4 3.6 ...
متن کاملLinear Algebra Review and Reference
3 Operations and Properties 7 3.1 The Identity Matrix and Diagonal Matrices . . . . . . . . . . . . . . . . . . 8 3.2 The Transpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.3 Symmetric Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.4 The Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.5 Norms . . . ...
متن کاملA 2 receptor - mediated activation of cytosolic phospholipase
1. Abstract 2. Introduction 3. Materials and methods 3.1. Exogenous PLA2s 3.2. ExPLI 3.3. Cell culture 3.4. Determination of basement membrane invasiveness 3.5. Determination of cell chemotaxis 3.6. Determination of MMP activity (Zymography) 3.7. Determination of cell PLA2 activity 3.8. Determination of exogenous PLA2 activity 3.9. Identification of cell sPLA2 and sPLA2 receptor expression 3.10...
متن کامل