Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods
نویسندگان
چکیده
In view of the minimization of a nonsmooth nonconvex function f , we prove an abstract convergence result for descent methods satisfying a sufficient-decrease assumption, and allowing a relative error tolerance. Our result guarantees the convergence of bounded sequences, under the assumption that the function f satisfies the KurdykaLojasiewicz inequality. This assumption allows to cover a wide range of problems, including nonsmooth semi-algebraic (or more generally tame) minimization. The specialization of our result to different kinds of structured problems provides several new convergence results for inexact versions of the gradient method, the proximal method, the forward-backward splitting algorithm, the gradient projection and some proximal regularization of the Gauss-Seidel method in a nonconvex setting. Our results are illustrated through feasibility problems, or iterative thresholding procedures for compressive sensing. 2010 Mathematics Subject Classification: 34G25, 47J25, 47J30, 47J35, 49M15, 49M37, 65K15, 90C25, 90C53.
منابع مشابه
Comparison results on the preconditioned mixed-type splitting iterative method for M-matrix linear systems
Consider the linear system Ax=b where the coefficient matrix A is an M-matrix. In the present work, it is proved that the rate of convergence of the Gauss-Seidel method is faster than the mixed-type splitting and AOR (SOR) iterative methods for solving M-matrix linear systems. Furthermore, we improve the rate of convergence of the mixed-type splitting iterative method by applying a preconditio...
متن کاملAccelerated and Inexact Forward-Backward Algorithms
We propose a convergence analysis of accelerated forward-backward splitting methods for composite function minimization, when the proximity operator is not available in closed form, and can only be computed up to a certain precision. We prove that the 1/k2 convergence rate for the function values can be achieved if the admissible errors are of a certain type and satisfy a sufficiently fast deca...
متن کاملProximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Lojasiewicz Inequality
We study the convergence properties of an alternating proximal minimization algorithm for nonconvex structured functions of the type: L(x, y) = f(x)+Q(x, y)+g(y), where f : Rn → R∪{+∞} and g : Rm → R∪{+∞} are proper lower semicontinuous functions, and Q : Rn × Rm → R is a smooth C function which couples the variables x and y. The algorithm can be viewed as a proximal regularization of the usual...
متن کاملA distributed block coordinate descent method for training l1 regularized linear classifiers
Distributed training of l1 regularized classifiers has received great attention recently. Most existing methods approach this problem by taking steps obtained from approximating the objective by a quadratic approximation that is decoupled at the individual variable level. These methods are designed for multicore systems where communication costs are low. They are inefficient on systems such as ...
متن کاملConvergence of a semi-analytical method on the fuzzy linear systems
In this paper, we apply the homotopy analysis method (HAM) for solving fuzzy linear systems and present the necessary and sufficient conditions for the convergence of series solution obtained via the HAM. Also, we present a new criterion for choosing a proper value of convergence-control parameter $hbar$ when the HAM is applied to linear system of equations. Comparisons are made between the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 137 شماره
صفحات -
تاریخ انتشار 2013