Quiver Varieties and Demazure Modules
نویسنده
چکیده
Using subvarieties, which we call Demazure quiver varieties, of the quiver varieties of Nakajima, we give a geometric realization of Demazure modules of Kac-Moody algebras with symmetric Cartan data. We give a natural geometric characterization of the extremal weights of a representation and show that Lusztig's semicanonical basis is compatible with the filtration of a representation by Demazure modules. For the case of sl 2 , we give a characterization of the Demazure quiver variety in terms of a nilpotency condition on quiver representations and an explicit combinatorial description of the De-mazure crystal in terms of Young pyramids.
منابع مشابه
2 1 Se p 20 04 QUIVER VARIETIES AND DEMAZURE MODULES
Using subvarieties, which we call Demazure quiver varieties, of the quiver varieties of Nakajima, we give a geometric realization of Demazure modules of Kac-Moody algebras with symmetric Cartan data. We give a natural geometric characterization of the extremal weights of a representation and show that Lusztig's semicanonical basis is compatible with the filtration of a representation by Demazur...
متن کاملQuiver Grassmannians, Quiver Varieties and the Preprojective Algebra
Quivers play an important role in the representation theory of algebras, with a key ingredient being the path algebra and the preprojective algebra. Quiver grassmannians are varieties of submodules of a fixed module of the path or preprojective algebra. In the current paper, we study these objects in detail. We show that the quiver grassmannians corresponding to submodules of certain injective ...
متن کاملQuiver Varieties and Cluster Algebras
Motivated by a recent conjecture by Hernandez and Leclerc [30], we embed a Fomin-Zelevinsky cluster algebra [20] into the Grothendieck ring R of the category of representations of quantum loop algebras Uq(Lg) of a symmetric Kac-Moody Lie algebra, studied earlier by the author via perverse sheaves on graded quiver varieties [48]. Graded quiver varieties controlling the image can be identified wi...
متن کاملQuiver Varieties and Finite Dimensional Representations of Quantum Affine Algebras
Introduction 145 1. Quantum affine algebra 150 2. Quiver variety 155 3. Stratification of M0 163 4. Fixed point subvariety 167 5. Hecke correspondence and induction of quiver varieties 169 6. Equivariant K-theory 174 7. Freeness 178 8. Convolution 185 9. A homomorphism Uq(Lg)→ KGw×C ∗ (Z(w))⊗Z[q,q−1] Q(q) 192 10. Relations (I) 194 11. Relations (II) 202 12. Integral structure 214 13. Standard m...
متن کاملQUIVER VARIETIES AND t–ANALOGS OF q–CHARACTERS OF QUANTUM AFFINE ALGEBRAS
Let us consider a specialization of an untwisted quantum affine algebra of type ADE at a nonzero complex number, which may or may not be a root of unity. The Grothendieck ring of its finite dimensional representations has two bases, simple modules and standard modules. We identify entries of the transition matrix with special values of “computable” polynomials, similar to Kazhdan-Lusztig polyno...
متن کامل