Ul’yanov–type Inequalities and Embeddings between Besov Spaces: the Case of Parameters with Limit Values

نویسندگان

  • OSCAR DOMÍNGUEZ
  • O. DOMÍNGUEZ
چکیده

In this paper we obtain some limit cases of inequalities of Ul’yanov-type for modulus of smoothness between Lorentz-Zygmund spaces on Tn . Corresponding embedding theorems for the Besov spaces are investigated. Mathematics subject classification (2010): 41A17, 46E30, 46E35, 46M35.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Integral Inequalities and Embeddings of Besov Spaces

It is shown that certain known integral inequalities imply directly a well-known embedding theorem of Besov spaces.

متن کامل

Sharp Estimates of the Embedding Constants for Besov Spaces

Sharp estimates are obtained for the rates of blow up of the norms of embeddings of Besov spaces in Lorentz spaces as the parameters approach critical values.

متن کامل

ar X iv : m at h / 06 09 78 7 v 1 [ m at h . FA ] 2 8 Se p 20 06 EMBEDDINGS FOR ANISOTROPIC BESOV SPACES

We prove embedding theorems for fully anisotropic Besov spaces. More concrete, inequalities between modulus of continuity in different metrics and of Sobolev type are obtained. Our goal is to get sharp estimates for some anisotropic cases previously unconsidered.

متن کامل

Gelfand and Kolmogorov numbers of Sobolev embeddings of weighted function spaces

In this paper we study the Gelfand and Kolmogorov numbers of Sobolev embeddings between weighted function spaces of Besov and Triebel–Lizorkin type with polynomial weights. The sharp asymptotic estimates are determined in the so-called non-limiting case. © 2011 Elsevier Inc. All rights reserved.

متن کامل

Frame Characterizations of Besov and Triebel–lizorkin Spaces on Spaces of Homogeneous Type and Their Applications

The author first establishes the frame characterizations of Besov and Triebel–Lizorkin spaces on spaces of homogeneous type. As applications, the author then obtains some estimates of entropy numbers for the compact embeddings between Besov spaces or between Triebel–Lizorkin spaces. Moreover, some real interpolation theorems on these spaces are also established by using these frame characteriza...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017