Fracture & Fatigue Analyses: SGBEM-FEM or XFEM? Part 1: 2D Structures
نویسندگان
چکیده
In this paper, and its companion Part 2 [Dong and Atluri (2013b)], the Symmetric Galerkin Boundary Element Method (SGBEM), and the SGBEMFEM alternating/coupling methods, are compared with the recently popularized Extended Finite Element Method (XFEM), for analyzing fracture and fatigue crack propagation in complex structural geometries. The historical development, and the theoretical/algorithmic formulations, of each method are succinctly reviewed. The advantages and disadvantages of each method are critically discussed. A comprehensive evaluation of the performances of the SGBEM-based methods, and their comparison with XFEM, in modeling cracked solid structures undergoing fatigue crack-growth is carried out. A thorough examination of a large set of numerical examples of varying degrees of complexity shows that, the SGBEM-based methods: (a) are far more accurate than XFEM for computing stress intensity factors, and thus the fatigue-crack-growth-rates; (b) require significantly coarser and lower-quality meshes than in XFEM, and thus result in significant savings of computational costs, and more importantly in considerable savings of the human-labor-costs of generating meshes; (c) require minimal effort for modeling the non-collinear/non-planar propagation of cracks under fatigue, without using the Level Set or Fast Marching methods to track the crack surface; (d) can easily perform fracture and fatigue analysis of complex structures, such as repaired cracked structures with composite patches, and damage in heterogeneous materials. It is thus concluded that the SGBEM-based methods, and alternating methods, which were developed over the past 20-30 years by Atluri and his many collaborators, are by far the best methods for analyzing fracture and non-planar fatigue crack propagation in complex structures, and are thus valuable for inclusion in general-purpose, off-the-shelf commercial software for structural analyses. This objective is pursued by the authors.
منابع مشابه
Fracture & Fatigue Analyses: SGBEM-FEM or XFEM? Part 2: 3D Solids
The SGBEM-FEM alternating method is compared with the recently popularized XFEM, for analyzing mixed-mode fracture and fatigue growth of 3D nonplanar cracks in complex solid and structural geometries. A large set of 3D examples with different degrees of complexity is analyzed by the SGBEM-FEM alternating method, and the numerical results are compared with those obtained by XFEM available in the...
متن کاملThree-Dimensional SGBEM-FEM Alternating Method for Analyzing Fatigue-Crack Growth in and the Life of Attachment Lugs
In the present paper, stress intensity factor (SIF) analyses and fatigue-crack-growth simulations of corner cracks emanating from loaded pinholes of attachment lugs in structural assemblies are carried out for different load cases. A three-dimensional (3D) symmetric Galerkin boundary-element method (SGBEM) and FEM alternating method is developed to analyze the nonplanar growth of these surface ...
متن کاملMixed-mode fracture & non-planar fatigue analyses of cracked I-beams, using a 3D SGBEM–FEM Alternating Method
In the present paper, computations of mixed mode stress intensity factor (SIF) variations along the crack front, and fatigue-crack-growth simulations, in cracked I-beams, considering different load cases and initial crack configurations, are carried out by employing the three-dimensional SGBEM (Symmetric Galerkin Boundary Element Method)–FEM (Finite Element Method) Alternating Method. For mode-...
متن کاملSGBEM (for Cracked Local Subdomain) – FEM (for uncracked global Structure) Alternating Method for Analyzing 3D Surface Cracks and Their Fatigue-Growth
As shown in an earlier work, the FEM-BEM alternating method is an efficient and accurate method for fracture analysis. In the present paper, a further improvement is formulated and implemented for the analyses of three-dimensional arbitrary surface cracks by modeling the cracks in a local finite-sized subdomain using the symmetric Galerkin boundary element method (SGBEM). The finite element met...
متن کاملCombining SGBEM and FEM for modeling 3D cracks
The SGBEM-FEM alternating method suitable for the solution of elastic and elasticplastic three-dimensional fracture mechanics problems is presented. The crack is modeled by the symmetric Galerkin boundary element method (SGBEM), as a distribution of displacement discontinuities in an infinite medium. The finite element method (FEM) is used for stress analysis of the uncracked finite body. The s...
متن کامل