Photothermally reduced graphene as high-power anodes for lithium-ion batteries.

نویسندگان

  • Rahul Mukherjee
  • Abhay Varghese Thomas
  • Ajay Krishnamurthy
  • Nikhil Koratkar
چکیده

Conventional graphitic anodes in lithium-ion batteries cannot provide high-power densities due to slow diffusivity of lithium ions in the bulk electrode material. Here we report photoflash and laser-reduced free-standing graphene paper as high-rate capable anodes for lithium-ion batteries. Photothermal reduction of graphene oxide yields an expanded structure with micrometer-scale pores, cracks, and intersheet voids. This open-pore structure enables access to the underlying sheets of graphene for lithium ions and facilitates efficient intercalation kinetics even at ultrafast charge/discharge rates of >100 C. Importantly, photothermally reduced graphene anodes are structurally robust and display outstanding stability and cycling ability. At charge/discharge rates of ~40 C, photoreduced graphene anodes delivered a steady capacity of ~156 mAh/g(anode) continuously over 1000 charge/discharge cycles, providing a stable power density of ~10 kW/kg(anode). Such electrodes are envisioned to be mass scalable with relatively simple and low-cost fabrication procedures, thereby providing a clear pathway toward commercialization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orderly packed anodes for high-power lithium-ion batteries with super-long cycle life: rational design of MnCO3/large-area graphene composites.

MnCO3 particles uniformly distributed on large-area graphene form 2D composites whose large-area character enables them to self-assemble face-to-face into orderly packed electrodes. Such regular structures form continuous and efficient transport networks, leading to outstanding lithium storage with high capacity, ultralong cycle life, and excellent rate capability--all characteristics that are ...

متن کامل

Graphene-based nanocomposite anodes for lithium-ion batteries.

Graphene-based nanocomposites have been demonstrated to be promising high-capacity anodes for lithium ion batteries to satisfy the ever-growing demands for higher capacity, longer cycle life and better high-rate performance. Synergetic effects between graphene and the introduced second-phase component are generally observed. In this feature review article, we will focus on the recent work on fo...

متن کامل

Role of Nitrogen Doped Graphene for Improved High Capacity Potassium Ion Battery Anodes.

Potassium is an earth abundant alternative to lithium for rechargeable batteries, but a critical limitation in potassium ion battery anodes is the low capacity of KC8 graphite intercalation compounds in comparison to conventional LiC6. Here we demonstrate that nitrogen doping of few-layered graphene can increase the storage capacity of potassium from a theoretical maximum of 278 mAh/g in graphi...

متن کامل

Synergistic effect of graphene and polypyrrole to enhance the SnO2 anode performance in lithium-ion batteries

In this work, a synergistic effect of reduced graphene oxide (rGO) and polypyrrole (PPy) was studied in terms of their promotional role to enhance the capacity and cyclic stability of hollow SnO2 anodes in lithium-ion batteries. The core–shell structured hollow SnO2/rGO/PPy nanocomposites were synthesized using a hydrothermal method followed by an in situ chemical-polymerization route. Substant...

متن کامل

Improved electrochemical performance of tin-sulfide anodes for sodium-ion batteries

Due to their highly reversible capacity, tin-sulfide-basedmaterials have gained attention as potential anodes for sodium-ion and lithium-ion batteries. Nevertheless, the performance of tin sulfide anodes is much lower than that of tin oxide anodes. The aim of the present investigation is to improve the electrochemical performances of SnS anodes for sodium-ion batteries using conventional organi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ACS nano

دوره 6 9  شماره 

صفحات  -

تاریخ انتشار 2012