Perinatal loss of Nkx2-5 results in rapid conduction and contraction defects.

نویسندگان

  • Laura E Briggs
  • Morihiko Takeda
  • Adolfo E Cuadra
  • Hiroko Wakimoto
  • Melissa H Marks
  • Alexandra J Walker
  • Tsugio Seki
  • Suk P Oh
  • Jonathan T Lu
  • Colin Sumners
  • Mohan K Raizada
  • Nobuo Horikoshi
  • Ellen O Weinberg
  • Kenji Yasui
  • Yasuhiro Ikeda
  • Kenneth R Chien
  • Hideko Kasahara
چکیده

Homeobox transcription factor Nkx2-5, highly expressed in heart, is a critical factor during early embryonic cardiac development. In this study, using tamoxifen-inducible Nkx2-5 knockout mice, we demonstrate the role of Nkx2-5 in conduction and contraction in neonates within 4 days after perinatal tamoxifen injection. Conduction defect was accompanied by reduction in ventricular expression of the cardiac voltage-gated Na+ channel pore-forming alpha-subunit (Na(v)1.5-alpha), the largest ion channel in the heart responsive for rapid depolarization of the action potential, which leads to increased intracellular Ca2+ for contraction (conduction-contraction coupling). In addition, expression of ryanodine receptor 2, through which Ca2+ is released from sarcoplasmic reticulum, was substantially reduced in Nkx2-5 knockout mice. These results indicate that Nkx2-5 function is critical not only during cardiac development but also in perinatal hearts, by regulating expression of several important gene products involved in conduction and contraction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ablation of Nkx2-5 at mid-embryonic stage results in premature lethality and cardiac malformation.

AIMS Human congenital heart disease linked to mutations in the homeobox transcription factor, NKX2-5, is characterized by cardiac anomalies, including atrial and ventricular septal defects as well as conduction and occasional defects in contractility. In the mouse, homozygous germline deletion of Nkx2-5 gene results in death around E10.5. It is, however, not established whether Nkx2-5 is necess...

متن کامل

Nkx2-5 Pathways and Congenital Heart Disease Loss of Ventricular Myocyte Lineage Specification Leads to Progressive Cardiomyopathy and Complete Heart Block

Human mutations in Nkx2-5 lead to progressive cardiomyopathy and conduction defects via unknown mechanisms. To define these pathways, we generated mice with a ventricular-restricted knockout of Nkx2-5, which display no structural defects but have progressive complete heart block, and massive trabecular muscle overgrowth found in some patients with Nkx2-5 mutations. At birth, mutant mice display...

متن کامل

Nkx2-5 suppresses the proliferation of atrial myocytes and conduction system.

RATIONALE Tight control of cardiomyocyte proliferation is essential for the formation of four-chambered heart. Although human mutation of NKX2-5 is linked to septal defects and atrioventricular conduction abnormalities, early lethality and hemodynamic alteration in the mutant models have caused controversy as to whether Nkx2-5 regulates cardiomyocyte proliferation. OBJECTIVE In this study, we...

متن کامل

Familial Atrial Septal Defect and Sudden Cardiac Death: Identification of a Novel NKX2‐5 Mutation and a Review of the Literature

OBJECTIVE Atrial septal defect (ASD) is the second most common congenital heart defect (CHD) and is observed in families as an autosomal dominant trait as well as in nonfamilial CHD. Mutations in the NKX2-5 gene, located on chromosome 5, are associated with ASD, often combined with conduction disturbances, cardiomyopathies, complex CHD, and sudden cardiac death as well. Here, we show that NKX2-...

متن کامل

A Molecular Pathway Including Id2, Tbx5, and Nkx2-5 Required for Cardiac Conduction System Development

The cardiac conduction system is an anatomically discrete segment of specialized myocardium that initiates and propagates electrical impulses to coordinate myocardial contraction. To define the molecular composition of the mouse ventricular conduction system we used microdissection and transcriptional profiling by serial analysis of gene expression (SAGE). Conduction-system-specific expression ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 103 6  شماره 

صفحات  -

تاریخ انتشار 2008