The Volume of a Local Nodal Domain
نویسنده
چکیده
Let M either be a closed real analytic Riemannian manifold or a closed C∞-Riemannian surface. We estimate from below the volume of a nodal domain component in an arbitrary ball, provided that this component enters the ball deeply enough.
منابع مشابه
Three dimensional static and dynamic analysis of thick plates by the meshless local Petrov-Galerkin (MLPG) method under different loading conditions
In this paper, three dimensional (3D) static and dynamic analysis of thick plates based on the Meshless Local Petrov-Galerkin (MLPG) is presented. Using the kinematics of a three-dimensional continuum, the local weak form of the equilibrium equations is derived. A weak formulation for the set of governing equations is transformed into local integral equations on local sub-domains by using a uni...
متن کاملNumerical Simulation of the Hydrodynamics of a Two-Dimensional Gas—Solid Fluidized Bed by New Finite Volume Based Finite Element Method
n this work, computational fluid dynamics of the flow behavior in a cold flow of fluidized bed is studied. An improved finite volume based finite element method has been introduced to solve the two-phase gas/solid flow hydrodynamic equations. This method uses a collocated grid, where all variables are located at the nodal points. The fluid dynamic model for gas/solid two-phase flow is based on ...
متن کاملA New Implementation of the Meshless Finite Volume Method, Through the MLPG “Mixed” Approach
The Meshless Finite Volume Method (MFVM) is developed for solving elasto-static problems, through a new Meshless Local Petrov-Galerkin (MLPG) “Mixed” approach. In this MLPG mixed approach, both the strains as well as displacements are interpolated, at randomly distributed points in the domain, through local meshless interpolation schemes such as the moving least squares(MLS) or radial basis fun...
متن کاملCoupling Nonlinear Element Free Galerkin and Linear Galerkin Finite Volume Solver for 2D Modeling of Local Plasticity in Structural Material
This paper introduces a computational strategy to collaboratively develop the Galerkin Finite Volume Method (GFVM) as one of the most straightforward and efficient explicit numerical methods to solve structural problems encountering material nonlinearity in a small limited area, while the remainder of the domain represents a linear elastic behavior. In this regard, the Element Free Galerkin met...
متن کاملA Local Volume Estimate for Nodal Domains of Laplace Eigenfunctions
Let M either be a closed real analytic Riemannian manifold or a closed C∞-Riemannian surface. We estimate from below the volume of a nodal domain component in an arbitrary ball, provided that this component enters the ball deeply enough. The proof combines a generalized form of Hadamard’s Three Circles Theorem due to Nadirashvili, Rapid Growth of Eigenfunctions in Narrow Domains and the Donnell...
متن کامل