Duodenal Cytochrome b (DCYTB) in Iron Metabolism: An Update on Function and Regulation
نویسندگان
چکیده
Iron and ascorbate are vital cellular constituents in mammalian systems. The bulk-requirement for iron is during erythropoiesis leading to the generation of hemoglobin-containing erythrocytes. Additionally; both iron and ascorbate are required as co-factors in numerous metabolic reactions. Iron homeostasis is controlled at the level of uptake; rather than excretion. Accumulating evidence strongly suggests that in addition to the known ability of dietary ascorbate to enhance non-heme iron absorption in the gut; ascorbate regulates iron homeostasis. The involvement of ascorbate in dietary iron absorption extends beyond the direct chemical reduction of non-heme iron by dietary ascorbate. Among other activities; intra-enterocyte ascorbate appears to be involved in the provision of electrons to a family of trans-membrane redox enzymes; namely those of the cytochrome b561 class. These hemoproteins oxidize a pool of ascorbate on one side of the membrane in order to reduce an electron acceptor (e.g., non-heme iron) on the opposite side of the membrane. One member of this family; duodenal cytochrome b (DCYTB); may play an important role in ascorbate-dependent reduction of non-heme iron in the gut prior to uptake by ferrous-iron transporters. This review discusses the emerging relationship between cellular iron homeostasis; the emergent "IRP1-HIF2α axis"; DCYTB and ascorbate in relation to iron metabolism.
منابع مشابه
The role of Dcytb in iron metabolism: an update.
Dcytb (duodenal cytochrome b) is an iron-regulated ferric reductase highly expressed in duodenal enterocytes. Its location and strong regulation by iron has indicated it plays an important role in iron absorption. Expression of Dcytb in cells (Caco-2 and MDCK) was found to increase both ferric reductase activity and stimulate uptake of (59)Fe. An additional increase in cupric reductase activity...
متن کاملFermented Goat's Milk Consumption Improves Duodenal Expression of Iron Homeostasis Genes during Anemia Recovery.
Despite the crucial roles of duodenal cytochrome b (Dcytb), divalent metal transporter 1 (DMT1), ferritin light chain (Ftl1), ferroportin 1 (FPN1), transferrin receptor 1 (TfR1), and hepcidin antimicrobial peptide (Hamp) in Fe metabolism, no studies have investigated the modulations of these genes during Fe repletion with fermented milks. Analysis included Fe status markers and gene and protein...
متن کاملDuodenal cytochrome b: a novel ferrireductase in airway epithelial cells.
Catalytically active iron in the lung causes oxidative stress and promotes microbial growth that can be limited by intracellular sequestration of iron within ferritin. Because cellular iron uptake requires membrane ferrireductase activity that in the gut can be provided by duodenal cytochrome b (Dcytb), we sought Dcytb in the lung to test the hypothesis that it contributes to epithelial iron re...
متن کاملMolecular evidence for the role of a ferric reductase in iron transport.
Duodenal cytochrome b (Dcytb) is a haem protein similar to the cytochrome b561 protein family. Dcytb is highly expressed in duodenal brush-border membrane and is implicated in dietary iron absorption by reducing dietary ferric iron to the ferrous form for transport via Nramp2/DCT1 (divalent-cation transporter 1)/DMT1 (divalent metal-transporter 1). The protein is expressed in other tissues and ...
متن کاملSMALL INTESTINE Duodenal mRNA expression of iron related genes in response to iron loading and iron deficiency in four strains of mice
Background: Although much progress has been made recently in characterising the proteins involved in duodenal iron trafficking, regulation of intestinal iron transport remains poorly understood. It is not known whether the level of mRNA expression of these recently described molecules is genetically regulated. This is of particular interest however as genetic factors are likely to determine dif...
متن کامل